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MATHEMATICS (2)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the
same number of marks.

The approximate number of marks allocated to a part of a question is indicated in
the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, 6A).

Answers must be tied up in separate bundles, marked A, B or C according to the
letter affixed to each question.

Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle.

A separate yellow master cover sheet listing all the questions attempted must also
be completed.

Every cover sheet must bear your examination number and desk number.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1C

The function Φ(r) vanishes as |r| → ∞ (where r = (x, y, z)) and satisfies the
three-dimensional Poisson equation

∇2Φ(r) = σ(r) .

Write down the solution of this equation in terms of a Green function G(r; r0). [3]

What equation does G(r; r0) satisfy and what boundary conditions need to be
imposed? Show that

G(r; r0) =
−1
4π

1
|r− r0|

.

[7]

When σ(r) = 0, a solution of the Poisson equation in the half-space x > 0 bounded
by the surface x = 0 can be written as

Φ(r0) =
∫ ∞

−∞
dy

∫ ∞

−∞
dz f(y, z)

∂G̃(r; r0)
∂x

,

where the Green function now satisfies G̃(r; r0) = 0 when x = 0 or x0 = 0 and vanishes
as |r| → ∞. Using the method of images, or otherwise, determine the Green function
appropriate for this situation. [5]

Show that

Φ(r0) =
x0

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dz

f(y, z)
(x2

0 + (y − y0)2 + (z − z0)2)3/2
.

[5]
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2C

The two-dimensional electrostatic potential, Φ(r, θ), satisfies the Laplace equation
in polar coordinates

1
r

∂

∂r

(
r
∂Φ
∂r

)
+

1
r2

∂2Φ
∂θ2

= 0 ,

where Φ is periodic in θ.

Use the method of separation of variables to write the general solution for the
potential as

Φ(r, θ) = A0 + C0 ln r +
∞∑

n=1

[(
Anrn + Cnr−n

)
cos nθ +

(
Bnrn + Dnr−n

)
sinnθ

]
,

where An, Bn, Cn and Dn are constants. [10]

A conducting wire forms a circle of radius a. Along the semi-circle 0 < θ < π it is
kept at potential V1, while it is kept at a potential V2 along the semi-circle π < θ < 2π.
Give a series expansion for the potential inside the circle and show that the sum of the
series is

Φ(r, θ) =
V1 + V2

2
+

V1 − V2

π
tan−1

(
2ar sin θ

a2 − r2

)
.

[10][
You may use the fact that tan−1 y =

1
2i

ln
(

1 + iy

1− iy

)
and that ln(1 + x) = −

∞∑
n=1

(−x)n

n
.

]

3A

(i) Locate all the singularities of the following functions of the complex variable z,
including any at infinity, and state their nature (i.e. simple pole, branch point, etc):

a)
z2 − 3z

z2 + 2z + 2
, b)

z8 + z4 + 2
(z − 1)3(3z + 2)2

, c)
ln(z + 3i)

z2
.

[6]

(ii) State what it means if a function is said to be analytic in some region. Write
down the Cauchy-Riemann equations. Use the Cauchy-Riemann equations to prove that
d
dz ez = ez and d

dz sin z = cos z, where z is a complex number. [6]

(iii) Find v(x, y) such that f(z) = (u + iv) is analytic and express f(z) in terms of z
where:

a) u(x, y) = 2x(1− y) , b) u(x, y) = 3x2y + 2x2 − y3 − 2y2. [8]
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4A

Write down a formula for the residue of a pole of order N. [1]

Evaluate ∫ ∞

0

1
(x2 + 1)2(x2 + 4)

dx

by integrating a suitable function around a chosen contour in the complex plane. [9]

Show that
1

sin z
may be written as

1
z

(
1 +

z2

3!
+ O(z4)

)
for small z and use this

to write down the first two terms in the power series expansion of cot z for small z. Use

your answer to find the residue of f(z) =
π cot πz

z2
for the pole at z = 0. Find the residues

of f(z) for poles at z 6= 0. [5]

By integrating f(z) around a square contour SN with vertices at the four points
(±1± i)(N + 1

2 ), prove that

∞∑
n=1

1
n2

=
π2

6
.

[ You may use the fact that | cot πz| ≤ C for all points on SN for all N , where C
is a constant.] [5]

5C

Define the Laplace transform f̄(p) of a function f(t). Write down the inversion
formula that expresses f(t) in terms of f̄(p), clearly specifying the path of integration. [4]

The Laplace transform of a function x(t) is given by

x̄(p) = f̄(p) ḡ(p) .

Derive the formula

x(t) =
∫ t

0

g(t− τ) f(τ) dτ .

[6]

Consider the equation
y′′(t)− y(t) = g(t) ,

with boundary conditions y(0) = 1 and y′(0) = 1, where g(t) is an arbitrary function.
Show that

y(t) =
∫ t

0

sinh(t− τ) g(τ) dτ + et .

[10]
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6A

(i) Write down the transformation law for a tensor of rank n. What is the definition
of an isotropic tensor? Prove that the most general isotropic tensor of rank two is λδij ,
where λ is a scalar, by considering rotations by 90◦ of a general tensor of rank two Tij . [6]

(ii) Prove that any tensor of rank two can be expressed as the sum of a symmetric
tensor Sij and an anti-symmetric tensor Aij . (You should include a proof that S and A
are tensors.) The vector a is defined by ai = 1

2εijkAjk; show that Aij = εkijak and write
down the matrix components of A in terms of a. [7]

(iii) Let v(x) be a vector field. Given that ∂i =
∂

∂xi
is a tensor of rank one, prove that

∇× v is a vector field.

Use suffix notation to show:

∇× (∇× v) = ∇ (∇ · v)−∇2v (∗)

In the absence of charges and currents, Maxwell’s equations for an electric field E
and a magnetic field B are given by:

∇ ·E = 0 , ∇ · cB = 0 ,

∇× cB− 1
c

∂E
∂t

= 0 , ∇×E +
1
c

∂cB
∂t

= 0 ,

where c is the speed of light. Using the identity (∗), show that E and B both satisfy the
wave equation

−∇2v +
1
c2

∂2v
∂t2

= 0 .

[7]
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7C

Define the normal modes, normal frequencies and normal coordinates of a system
of interacting particles subject to small oscillations. [6]

Consider four point particles of mass m that are constrained to move on the surface
of a frictionless cylinder of radius R. Adjacent pairs of beads are connected by springs
of spring constant k and equilibrium length πR

2 . The beads are free to move only in the
angular direction around the cylinder, as in the diagram, so the length of any spring is
proportional to the angular separation of the particles it connects (and the force of gravity
can be neglected).

Write down the Lagrangian for the system. Find the normal modes and normal
frequencies. Describe the motions corresponding to each normal mode. [14]
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8B

Write down the axioms for a set G to be a group. State Lagrange’s theorem. [5]

If G is a group, and g ∈ G, define the order of g. Show that the order of g divides
|G|, the order of the group.

Show that if G is a group and |G| = p where p is prime, then G is isomorphic to
Cp, the order p cyclic group.

If G is a group such that every element except for the identity has order 2, show
that G is abelian. [9]

Now suppose that G is a group with |G| = 6. Prove the following statements:

(i) At least one element of the group must be of order 3 or 6.

(ii) It is not possible for there to be two elements of the group, x and y, of order 3
with x 6= y and x 6= y2.

[4]

Hence show that either G is isomorphic to C6, or that G = {I, x, x2, h1, h2, h3}
where x is of order 3 and h1, h2, h3 are of order 2. [2]

9B

Let G be a group. Suppose that H ⊂ G. What does it mean for H to be a normal
subgroup of G?

Suppose that G1, G2 are groups, and Φ is a mapping Φ : G1 → G2. Give the
definition for the map Φ to be a homomorphism. [2]

If Φ : G1 → G2 is a homomorphism, show that the kernel of Φ is a normal subgroup
of G1. [8]

Consider the following function of n real variables x1, . . . , xn:

f(x1, . . . , xn) =
∏
i<j

(xi − xj) .

Let Σn be the permutation group. Suppose that under the action of σ ∈ Σn,

xi → xσ(i)

for i = 1, . . . , n. If σ ∈ Σn is a transposition, determine its action on the polynomial f . [6]

Suppose that π ∈ Σn is a permutation that can be written as a product of an
even number of transpositions. Deduce that all decompositions of π into a product of
transpositions must contain an even number of transpositions. [4]
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10B

Let D be a representation of G; i.e. a homomorphism D : G → GL(n, C), where
GL(n, C) is the group of n × n invertible complex matrices. What does it mean for a
vector subspace W ⊂ Cn to be an invariant subspace with respect to D? What does it
mean for D to be irreducible? [4]

Let D1 : G → GL(n, C) be a representation, and define

D2(g) =
[
D1(g−1)

]†
where † denotes the hermitian conjugate. Show that D2 is a representation. [6]

Suppose that W is an invariant subspace of Cn with respect to D2. Show that W⊥
is an invariant subspace of Cn with respect to D1, where W⊥ is the vector space of vectors
orthogonal to W . Hence show that if D1 is irreducible then D2 must also be irreducible. [10]

END OF PAPER
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