
NATURAL SCIENCES TRIPOS Part IB & II (General)

Tuesday, 29 May, 2012 9:00 am to 12:00 pm

MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the

same number of marks.

The approximate number of marks allocated to a part of a question is indicated in

the left hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, 6A).

Answers must be tied up in separate bundles, marked A, B or C according to the

letter affixed to each question.

Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle.

A separate green master cover sheet listing all the questions attempted must also

be completed.

Every cover sheet must bear your examination number and desk number.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

6 blue cover sheets and treasury tags None

Green master cover sheet

Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1C

Let F be a vector field and a be an arbitrary constant vector.

Show that
∇× (a× F) = a (∇ · F)− (a · ∇)F .

[4]

State Stokes’ theorem. [2]

By applying Stokes’ theorem to the above identity, show that

∫

C

dl× F =

∫

S

(dS×∇)× F

for any closed curve C that bounds a surface S. [8]

Verify this identity for the case where C is a square path starting at (0, 0, 0), then
progressing in a straight line to (0, 1, 0), then to (1, 1, 0), then to (1, 0, 0) and finally back
to the origin, with F = r and r = (x, y, z). [6]

2C

The number density of neutrons n(r, t) in a lump of uranium is determined by the
partial differential equation

∇2n =
∂n

∂t
− λn

where ∇2 is the Laplacian operator, r is the position vector, t is the time and λ is a
constant.

Suppose the lump of uranium is a sphere of radius a and the density of neutrons is
spherically symmetric. Furthermore, suppose this equation can be solved by the method
of separation of variables so that

n = R(r)T (t)

where r is the distance from the centre of the sphere. Find two ordinary differential
equations for R(r) and T (t). [4]

Suppose that the density of neutrons is never zero except at the surface of the sphere
and finite everywhere inside. Find n(r, t). [8]

Show that the concentration of neutrons will grow as a function of time provided
that

λ >
π2

a2
.

[8]

[Hint: To find R(r), make the substitution R(r) = rpf(r) for some p.]
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3C

Find the general solution y(x) to the homogeneous second-order linear differential
equation

d2y

dx2
+

3

x

dy

dx
+

y

x2
= 0 .

[6]

Construct the Green’s function for this equation in the region 0 6 x < ∞, which
satisfies

d2G(x, ξ)

dx2
+

3

x

dG(x, ξ)

dx
+
G(x, ξ)

x2
= δ(x − ξ)

subject to the boundary conditions G(0, ξ) = dG(0,ξ)
dx

= 0, where δ(x− ξ) is the Dirac delta
function. [8]

Use your Green’s function to solve the differential equation

d2y

dx2
+

3

x

dy

dx
+

y

x2
= x

for x > 0, subject to the boundary conditions y(0) = y′(0) = 0. [6]
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4C

Calculate the Fourier transform of the function

f(x) = e−λx2

,

where λ is a positive constant. [5]

Consider the partial differential equation for ψ(x, t)

∂2ψ

∂x2
=
∂ψ

∂t
.

Find the ordinary differential equation that

ψ̃(k, t) =

∫ ∞

−∞

ψ(x, t) e−ikx dx

obeys. [5]

Find ψ̃(k, t) given ψ(x, 0) = e−λx2

. [5]

Hence find ψ(x, t) for t > 0. [5]

[Hint: You may use the following relation

∫ ∞

−∞

e−λ(x+iα)2 dx =

√

π

λ

for α and λ real constants and λ > 0.]
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5A

(i) Show that an n × n matrix A is diagonalisable if it has n linearly independent
eigenvectors. Show that if A is diagonalisable, then so is B = P−1AP, where P

is an n× n matrix and P−1 is its inverse. [6]

(ii) Let λi (with i = 1, 2, . . . , n) be the eigenvalues of an n× n Hermitian matrix A.

(a) Show that

TrAk =

n
∑

i=1

λki and detAk =

n
∏

i=1

λki ,

for all positive integers k. [6]

(b) Show that
det(expA) = exp(TrA) .

[4]

(c) If A2 = A, prove that either (i) detA = 1 and TrA = n or (ii) detA = 0 and
TrA = m < n, where m is an integer. [4]
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6A

(i) Let A be a complex n× n matrix, and define

H ≡ A+ A†

2
and S ≡ A− A†

2i
.

Let λ be an eigenvalue of A and x be the corresponding unit-normalised eigenvector.

(a) Show that λ = x†Hx+ ix†Sx. [4]

(b) Show that the real part of λ is given by Re(λ) = x†Hx and the imaginary part
is given by Im(λ) = x†Sx. [4]

(ii) Let B be a Hermitian n× n matrix with n distinct (real) eigenvalues λi.

(a) Show that the corresponding normalised eigenvectors xi satisfy

x†
ixj = δij ,

and therefore form an orthonormal basis, {xi : i = 1, 2, · · · , n}. [6]

(b) Now, consider
β ≡ (Bv − av)†(Bv − bv) ,

where v is an arbitrary vector, while a and b are real constants with a < b. By
expanding v in terms of the eigenvectors xi, show that β > 0 if no eigenvalue
lies in the interval [a, b]. [6]
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7A

(i) Two-dimensional fluid flow can be described by a complex potential

f(z) = u(x, y) + iv(x, y) ,

where z ≡ x+ iy. Let the fluid velocity be V = ∇u. If f(z) is analytic, show that

(a) ∇ ·V = 0, [4]

(b) df
dz

= Vx − iVy. [4]

[You may assume the Cauchy-Riemann equations without proof.]

(ii) Consider the Gamma function

Γ(z) =

∫ ∞

0
tz−1e−tdt for Re(z) > 0.

(a) Using integration by parts, derive the recursion relation

Γ(z + 1) = z Γ(z) . (⋆)

Also show that Γ(1) = 1. [4]

(b) Assuming that (⋆) holds for all z ∈ C, show that Γ(z) has simple poles at all
non-positive integers. Compute their residues. [8]
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8A

Legendre’s equation

(1− x2)y′′ − 2xy′ + ℓ(ℓ+ 1)y = 0 ,

admits series solutions of the form y =

∞
∑

n=0

anx
n.

(a) Derive the recurrence relation for an. [4]

(b) Show that for integer ℓ, one of the solutions, Pℓ, is a polynomial of order ℓ; while the
other solution is an infinite series Qℓ. [2]

(c) Find the first four polynomials Pℓ(x) (i.e. ℓ = 0, 1, 2, 3) given the normalisation
Pℓ(1) = 1. [4]

(d) Show that the Wronskian of Pℓ and Qℓ is given by

PℓQ
′
ℓ − P ′

ℓQℓ =
Aℓ

1− x2
,

for Aℓ independent of x. [6]

(e) Derive Q0(x) in closed form, assuming Q0(0) = 0. [4]
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9A

(i) (a) State the Euler-Lagrange equation corresponding to stationary values of the
functional

I[y(x)] =

∫ b

a

f(x, y(x), y′(x)) dx ,

for fixed y(a) and y(b). [2]

(b) Derive the first integral of the Euler-Lagrange equation for the case where f
is independent of y(x). [3]

(ii) Driving on a hot asphalt road, you may see the road in the distance appear to be
covered by what looks like water. This mirage effect arises because the refractive
index of air depends on temperature and is smaller near the surface of the hot road.

(a) Let x be the height above the road and y be a coordinate along the road. The
travel time of light is the following functional of the path taken

∫

n(x)
√

1 + (y′)2 dx ,

where n(x) is the refractive index.

Show that the path of least time satisfies

y′ =
dy

dx
=

c
√

n(x)2 − c2
, (⋆)

where c is a real constant. [4]

(b) Now let n(x) = 1 + βx, where β > 0 is a real constant.

By integrating (⋆), show that

x = − 1

β
+
c

β
cosh

[

β

c
(y − y0)

]

,

where the integration constant is defined such that y0 = y(x0) at
x0 = (−1 + c)/β. [8]

(c) For c > 1, sketch the path of the light x(y). [3]
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10A

(i) Consider the Sturm-Liouville equation

− d

dx

(

p(x)
dψ

dx

)

+ q(x)ψ = λw(x)ψ ,

where p(x) > 0 and w(x) > 0 for α < x < β.

(a) Show that finding the eigenvalues λ is equivalent to finding the stationary
values of the functional

Λ[ψ(x)] =

∫ β

α

(pψ′2 + qψ2)dx ,

subject to the constraint
∫ β

α

wψ2 dx = 1 .

You may assume that ψ(x) satisfies suitable boundary conditions at x = α
and x = β (which should be stated). [6]

(b) Explain briefly the Rayleigh-Ritz method for estimating the lowest eigenvalue
λ0. [4]

(ii) The wavefunction ψ(x) for a quantum harmonic oscillator satisfies

[

− d2

dx2
+ x2

]

ψ = λψ . (⋆)

(a) Use the trial function

ψ(x) =

{ √

15
16a5

(a2 − x2) for |x| 6 a

0 for |x| > a

to estimate the lowest eigenvalue λ0. [8]

(b) The exact ground state wavefunction is

ψ0(x) =
1√
2π
e−

1

2
x2

.

Find the corresponding eigenvalue and compare it to the previous estimate. [2]

END OF PAPER
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