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1A

Define the curl ∇ × v and the divergence ∇.v of a vector field v in Cartesian
coordinates. Show that

∇× (v × [∇× v]) = ([∇× v].∇)v− (v.∇) (∇× v)− (∇× v)(∇.v) .

[6]

Define the scale factors (or metric coefficients) hi (i = 1, 2, 3) for a general right-
handed orthogonal curvilinear coordinate system (q1, q2, q3). Calculate the scale factors for
the cylindrical polar coordinate system (ρ, φ, z). Calculate and sketch the unit vectors eρ,
eφ, ez relative to Cartesian axes (x, y, z) defined about the same origin as the cylindrical
polar coordinate system. [8]

The curl ∇ × v = (v1, v2, v3) and the divergence ∇.v in a general right-handed
orthogonal curvilinear coordinate system (q1, q2, q3) are given by:

∇× v =
1

h1h2h3
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∣

∣

∣

∣
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∂q2
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,

∇.v =
1

h1h2h3

[

∂

∂q1
(h2h3v1) +

∂

∂q2
(h3h1v2) +

∂

∂q3
(h1h2v3)

]

.

Consider the specific example u = u0(1−ρ2)ez in cylindrical polar coordinates, (where u0
is a positive constant) defined in the cylindrical region ρ 6 1. Using the above formulae,
calculate ∇× u, u× (∇× u) and ∇× (u× [∇× u]), and hence deduce that

([∇× u].∇)u = (u.∇) (∇× u) .

[6]
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2A

Consider the problem for u(x, t) defined on [0, π] for t > 0:

∂2u

∂x2
=

∂u

∂t
+ β(u− u0) ; u(x, 0) = f(x) , u(0, t) = u1 , u(π, t) = u2 ,

where β > 0, u0, u1 and u2 are constants.

By means of the substitution u(x, t) = u0 + v(x, t)e−βt, show that v(x, t) satisfies
the diffusion equation on [0, π] for t > 0:

∂2v

∂x2
=

∂v

∂t
,

with boundary conditions and initial condition given by

v(0, t) = eβt(u1 − u0) , v(π, t) = eβt(u2 − u0) , v(x, 0) = f(x)− u0 .

[6]

Now consider the specific situation where u0 = u1 = u2 6= 2, and f(x) = x(π − x).
Use the method of separation of variables to construct the solution for v(x, t). [10]

Hence show that as t → ∞, u(x, t) may be approximated as

u(x, t) ≃ u0 −
4

π
[u0 − 2] e−(β+1)t sinx .

[4]
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3A

Find the general solution y(x) to the homogeneous second order linear differential
equation

d2y

dx2
+

4

x

dy

dx
−

4

x2
y = 0 .

[4]

Using a Green’s function, find an integral representation for the solution of the
following inhomogeneous problem:

d2u

dx2
+

4

x

du

dx
−

4

x2
u = f(x) , 0 < x < 1 , u(0) = u(1) = 0 .

[10]

Use this representation to find an explicit solution in the case that

f(x) =

{

x, 0 < x < 1/2 ,

0, 1/2 < x < 1 .

[6]

[Hints: It may be useful to consider solutions of the form y = xn, and to evaluate
u(x) for x < 1/2 and x > 1/2 separately.]
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4A

The Fourier transform f̃(k) of a function f(x) is defined by

f̃(k) =

∫ ∞

−∞

e−ikx f(x) dx .

For an appropriately well-behaved function f(x) such that all relevant integrals exist,
define the inverse Fourier transform and the autocorrelation h(x) = f ⊗ f . [4]

Using the definition of h(x), prove Parseval’s theorem for Fourier transforms:

∫ ∞

−∞

|f(x)|2 dx =
1

2π

∫ ∞

−∞

|f̃(k)|2 dk .

[6]

Now consider the specific function

f(x) =

{

cos x if |x| 6 π/2 ,

0 otherwise.

Show that

f̃(k) =
2 cos kπ

2

1− k2
,

and hence evaluate the integral

∫ ∞

0

cos2 t
(

π2

4 − t2
)2 dt .

[10]
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5B

State the condition(s) for a square n× n matrix to be invertible. [1]

Let A be a square n×n complex matrix such that Aij = 0 if i < j, i.e. it is a lower
triangular matrix. Prove by induction or otherwise that the determinant of this matrix is

detA = A11A22...Ann.

[8]

Let B be an n × n dimensional invertible complex diagonal matrix with diagonal
elements {b, b2, b3, ... , bn} where b is a complex number. Find the condition on b such
that the determinant of B is pure imaginary. [5]

Let C and D be two anti-Hermitian matrices, i.e. C† = −C, D† = −D. Show that
CD is anti-Hermitian if and only if CD+DC = 0. Find a number α (real or complex)
such that CD+ αDC is anti-Hermitian. [6]

6B

What is the condition on a square matrix A for it to be diagonalizable? [2]

Given the following real 2× 2 matrix,

A =

(

4 5
1 0

)

,

find its eigenvalues λ1, λ2 and their corresponding eigenvectors V1,V2, and then construct
the rotation matrix P that diagonalizes A. [6]

Show that

P−1AnP =

(

λn
1 0
0 λn

2

)

. (∗)

[4]

By assuming that An = αnA + βnI for some scalars αn and βn, or otherwise, use
(∗) to prove that

An =

[

5n + (−1)n+1

6

]

A+

[

5n + 5(−1)n

6

]

I .

[8]
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7B

State the Cauchy-Riemann equations of an analytic function

f(z) = u(x, y) + iv(x, y) ,

where z = x+ iy and x, y are real numbers. Show that u(x, y) and v(x, y) satisfy Laplace’s
equation. [4]

What is an entire function? Prove that f(z) = sinh(z) is an entire function. By
induction, prove that f(z) = zn, where n is a positive integer, is also an entire function. [10]

What are the conditions on the function f(z) to have a pole of order n at z0? What
does it mean for the function f(z) to have an essential singularity at z0? Show that
f(z) = e1/z has an essential singularity at z = 0. For the function

fN (z) = zNe1/z ,

where N is a positive integer, calculate the Laurent series about the point at infinity.
Deduce that fN (z) has a pole at z = ∞, and identify its order. [6]

8A

Define an ordinary point, a regular singular point and an irregular singular point of
a second order linear ordinary differential equation. [3]

Laguerre’s equation for y(x) is defined as

x
d2y

dx2
+ (1− x)

dy

dx
+ νy = 0 ,

where ν is a real constant. Show that x = 0 is a regular singular point, and x = ∞ is an
irregular singular point. [4]

Search for solutions of the form

y(x) =

∞
∑

k=0

akx
k+σ ,

where σ is a (not necessarily integer) constant to be determined, and a0 6= 0. Show that
the indicial equation has a double root σ2 = 0, and hence derive the recursion relation for
the coefficients of the power series solution to Laguerre’s equation. Briefly comment on
the convergence properties of the series. [6]

Assume that a0 = 1, and that ν = n, a positive integer. Show that the recursion
relation terminates, thus defining the nth Laguerre polynomial Ln(x). Compute L0(x),
L1(x), L2(x) and L3(x). [7]
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9A

State Euler’s equation for determining stationary values of functionals I[y] of the
form

I[y] =

∫ xe

xs

F (x, y, y′) dx ,

along paths y(x) between fixed points (xs, ys) and (xe, ye), and hence show that if F (y, y′)
does not depend explicitly on x then Euler’s equation reduces to

F − y′
∂F

∂y′
= A ,

where A is a constant, and a prime denotes differentiation with respect to x. [4]

One particular form of Fermat’s principle states that the path taken by a ray of
light between two points in a medium is the path which makes the elapsed time stationary.
Consider a medium where the speed of light c(y) is a function of y alone. By taking a
first integral of the Euler equation or otherwise, show that the rays of light follow paths
defined implicitly by the equation

∫ y Ac(ŷ)

(1−A2[c(ŷ)]2)1/2
dŷ = ±(x+B) ,

where A and B are constants to be determined by requiring the path to pass through the
start and end points. [8]

Now consider a specific medium filling the upper half-plane y > 0 where c(y) = 1/y
and the start and end points of interest are (−1, cosh[1]) and (1, cosh[1]) respectively.
Calculate the path followed by a ray of light travelling between the start and end points,
the minimal value of y along this path, and the time taken to travel between the start and
end points. [8]

[Hint: It may be convenient to use the addition formulae for hyperbolic functions.]
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10A

Consider the self-adjoint problem for y(x):

d2y

dx2
+ (λǫ − ǫx)y = 0 , 0 < x < π , y(0) = y(π) = 0 , (∗)

where ǫ > 0, and λǫ is a (real) constant.

Consider the functional

F [u] =

∫ π

0

[

(u′)2 + ǫxu2
]

dx , (†)

where u(x) are members of the class of functions such that u(0) = u(π) = 0 and

G[u] =

∫ π

0
u2 dx = 1 ,

while a prime denotes differentiation with respect to x. Show that stationary values of F
correspond to eigenvalues λǫ of (∗), and the functions which make F stationary correspond
to the associated eigenfunctions of the eigenvalues λǫ. [8]

When ǫ = 0, show that the smallest eigenvalue for the problem (∗) is λ0 = 1 with
associated (normalised) eigenfunction Y1(x) given by

Y1(x) =

√

2

π
sinx.

[4]

Using Y1(x) as a trial function for u(x) in (†), calculate an upper bound for the
smallest eigenvalue λǫ of the full problem (∗) for non-zero ǫ. [8]

[Hints: The Euler equation can be used without proof, and it may be convenient to
express sin2 x using a double angle formula.]

END OF PAPER
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