MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question is indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, $\boldsymbol{6 A}$).
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}$ or \boldsymbol{C} according to the letter affixed to each question.

Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle.
A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1B
Let x, y, z be Cartesian co-ordinates, and let Φ be a scalar field.
Define the gradient $\nabla \Phi$ in Cartesian co-ordinates.
Let q_{1}, q_{2}, q_{3} be orthogonal curvilinear co-ordinates. Show that the gradient of Φ in orthogonal curvilinear co-ordinates is

$$
\nabla \Phi=\frac{\partial \Phi}{\partial q_{1}} \frac{\mathbf{e}_{1}}{h_{1}}+\frac{\partial \Phi}{\partial q_{2}} \frac{\mathbf{e}_{2}}{h_{2}}+\frac{\partial \Phi}{\partial q_{3}} \frac{\mathbf{e}_{3}}{h_{3}}
$$

and define the quantities \mathbf{e}_{i} and h_{i} which appear in this expression.
Oblate spheroidal co-ordinates (R, θ, ϕ) are defined by

$$
\begin{aligned}
& x=\cosh R \cos \theta \cos \phi \\
& y=\cosh R \cos \theta \sin \phi \\
& z=\sinh R \sin \theta .
\end{aligned}
$$

Show that the co-ordinate surfaces associated with R, θ, ϕ intersect at right angles.
Show that for these co-ordinates,

$$
h_{R}=h_{\theta}=\sqrt{\sinh ^{2} R+\sin ^{2} \theta}, \quad h_{\phi}=\cosh R \cos \theta .
$$

2A

Vibrations of a violin string are governed by the one-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

where $u(x, t)$ is the deflection of the string and c is a constant. The string is fixed at the ends $x=0$ and $x=L$. The initial deflection is $f(x)$ and the initial velocity is $g(x)$. Use the method of separation of variables to find the deflection at later times in terms of an infinite series

$$
u(x, t)=\sum_{n=1}^{\infty}\left[a_{n} F_{n}(t)+b_{n} G_{n}(t)\right] H_{n}(x),
$$

where $F_{n}(t), G_{n}(t), H_{n}(x), a_{n}$ and b_{n} should all be specified.
An initial displacement of the string is given by

$$
f(x)= \begin{cases}\frac{2 k x}{L} & \text { if } 0<x<\frac{L}{2} \\ \frac{2 k(L-x)}{L} & \text { if } \frac{L}{2}<x<L\end{cases}
$$

Sketch this function.
Find the solution corresponding to the string being released from rest with the above initial displacement.

3B
The Fourier transform of a function f is given by

$$
\tilde{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x
$$

Give the expression for the inverse Fourier transform.
Let $\alpha>0$ and define for non-negative integer n :

$$
f_{n}(x)= \begin{cases}x^{n} e^{-\alpha x} & x>0 \\ 0 & x \leqslant 0\end{cases}
$$

Show that

$$
\tilde{f}_{0}(k)=\frac{1}{\alpha+i k}
$$

and

$$
\tilde{f}_{n}(k)=\frac{n}{\alpha+i k} \tilde{f}_{n-1}(k), \quad n=1,2, \ldots
$$

Hence compute $\tilde{f}_{n}(k)$.
Prove the following identity (Parseval's theorem) for functions f and g :

$$
\int_{-\infty}^{\infty}[f(x)]^{*} g(x) d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty}[\tilde{f}(k)]^{*} \tilde{g}(k) d k,
$$

where * denotes complex conjugation.
Hence show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{\left(\alpha^{2}+k^{2}\right)^{n+1}} d k=\frac{2 \pi(2 n)!}{(n!)^{2}(2 \alpha)^{2 n+1}} \tag{4}
\end{equation*}
$$

[In this question all functions may be assumed to be sufficiently integrable so that their Fourier transforms and inverse Fourier transforms are well-defined.]

4B
(i) Let $\mathbf{a} \in \mathbb{R}^{n}$ be a fixed n-component real vector, $\mathbf{a} \neq 0$. Let A^{+}and A^{-}be real $n \times n$ matrices with components

$$
\left(A^{ \pm}\right)_{i j}=\delta_{i j} \pm a_{i} a_{j}
$$

Obtain the eigenvalues of $A^{ \pm}$and describe the corresponding eigenvectors.
Show that A^{+}is always invertible and obtain necessary and sufficient conditions for A^{-}to be invertible.
(ii) Let $\mathbf{b} \in \mathbb{R}^{3}$ be a fixed vector, $\mathbf{b} \neq 0$. Let B^{+}and B^{-}be real 3×3 matrices with components

$$
\left(B^{ \pm}\right)_{i j}=\delta_{i j} \pm b_{i} b_{j}+\epsilon_{i j k} b_{k}
$$

By choosing a suitable basis for \mathbb{R}^{3}, or otherwise, determine the real eigenvalues of $B^{ \pm}$ and the corresponding eigenvectors.

Show that B^{+}is invertible and obtain necessary and sufficient conditions for B^{-} to be invertible.

5B
What does it mean for a $n \times n$ square matrix to be diagonalizable?
Suppose that A is a $n \times n$ square matrix such that $A^{p}=0$ for some positive integer p. Show that A has 0 as an eigenvalue. Show also that A cannot be diagonalizable unless $A=0$.

Let B and C be the matrices

$$
B=\left(\begin{array}{ccc}
4+2 \alpha & -2 & -2-4 \alpha \\
3 \alpha & -3 & 9-6 \alpha \\
2+\alpha & -1 & -1-2 \alpha
\end{array}\right)
$$

for $\alpha \in \mathbb{R}$, and

$$
C=\left(\begin{array}{ccc}
0 & 2 & 6 \\
3 & 3 & 3 \\
3 & 1 & -3
\end{array}\right)
$$

By considering the characteristic polynomials of B and C, determine whether B and C are diagonalizable.

6 A

Define a singular point and a regular singular point of a homogeneous second-order linear ordinary differential equation. Identify two singular points of the following equation and determine their nature:

$$
\begin{equation*}
2 x(1-2 x) y^{\prime \prime}+\left(12 x^{2}-4 x+1\right) y^{\prime}-2\left(4 x^{2}+1\right) y=0 \tag{*}
\end{equation*}
$$

(i) Find two linearly independent solutions to (*) in the form of power series about $x=0$. The coefficients of the power series should be given in terms of recurrence relations, which you are not required to solve.
(ii) Write down the coefficient of the x^{n} term in the Taylor series expansions about $x=0$ of e^{x} and $e^{2 x}$. Demonstrate that these series converge for all x.
(iii) Use your answers to (i) and (ii) to verify that the general solution to (*) can be written as

$$
y=A \sqrt{x} e^{x}+B e^{2 x}
$$

7C Show how to express the eigenvalue equation

$$
\frac{d^{2} y}{d x^{2}}+u(x) \frac{d y}{d x}+v(x) y+\lambda w(x) y=0
$$

(where $u(x), v(x), w(x)$ are real functions and $w(x)>0$ for $a \leqslant x \leqslant b$) in Sturm-Liouville form,

$$
\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+q(x) y+\lambda r(x) y=0
$$

Suppose that y satisfies the boundary conditions

$$
k_{1} y(a)+k_{2} y^{\prime}(a)=0, \quad l_{1} y(b)+l_{2} y^{\prime}(b)=0,
$$

where $k_{1}, k_{2}, l_{1}, l_{2}$ are constants. Show that two eigenfunctions y_{m}, y_{n}, with distinct eigenvalues $\lambda_{m} \neq \lambda_{n}$ satisfy the orthogonality condition

$$
\begin{aligned}
\int_{a}^{b} r(x) y_{m} y_{n} d x=\frac{1}{\lambda_{m}-\lambda_{n}} & {\left[p(b)\left(y_{n}^{\prime}(b) y_{m}(b)-y_{m}^{\prime}(b) y_{n}(b)\right)\right.} \\
& \left.-p(a)\left(y_{n}^{\prime}(a) y_{m}(a)-y_{m}^{\prime}(a) y_{n}(a)\right)\right]=0
\end{aligned}
$$

Find the eigenfunctions and the values of the eigenvalue λ that satisfy the equation

$$
y^{\prime \prime}+2 \alpha y^{\prime}+\left(\alpha^{2}+\lambda\right) y=0
$$

where $y(0)=y(\pi)=0$.
Put the equation in Sturm-Liouville form and hence determine the orthogonality condition for the eigenfunctions.

8A

By first finding the appropriate Green's function, solve the differential equation

$$
y^{\prime \prime}(x)+k^{2} y(x)=f(x)
$$

where k is a non-zero real number for the cases:

$$
y(0)=y^{\prime}(0)=0, \quad f(x)=2 k \cos k x
$$

and

$$
y(0)=y\left(\frac{\pi}{6 k}\right)=0, \quad f(x)=\frac{k^{2}}{2}
$$

[You may use the identity $\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$.]

9C
The function $y(x)$ makes the value of

$$
F=\int_{a}^{b}\left(p(x)\left[y^{\prime}(x)\right]^{2}-q(x)[y(x)]^{2}\right) d x
$$

stationary subject to the condition $G=1$, where

$$
G=\int_{a}^{b} r(x)[y(x)]^{2} d x
$$

and with the boundary conditions $y(a)=y(b)=0$ (where $p(x), q(x), r(x)$ are real functions and $r(x)>0$ for $a \leqslant x \leqslant b$). Use Euler's equation to show that $y(x)$ satisfies the SturmLiouville equation

$$
\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+q(x) y+\lambda r(x) y=0
$$

Show that the stationary values of $\Lambda=F / G$ are eigenvalues corresponding to the values of λ.

Consider the equation

$$
\frac{d}{d x}\left(x \frac{d y}{d x}\right)-x y+\lambda y=0
$$

where $y(0)$ is finite and $y \rightarrow 0$ in the limit $x \rightarrow \infty$, and λ denotes an eigenvalue. Use the Rayleigh-Ritz method to obtain an estimate of the smallest eigenvalue by using a trial function $y_{\text {trial }}^{(1)}=e^{-\beta x}$.

Now use instead the trial function $y_{\text {trial }}^{(2)}=A-x$ for $0 \leq x \leq A, y=0$ for $A \leq x \leq \infty$ to give a new estimate of the smallest eigenvalue.

Which of these two estimates is the better and why?
[You may wish to use the fact that $\int_{0}^{\infty} x e^{-k x} d x=1 / k^{2}$.]

10C State the Euler equation obtained by minimizing $\int_{x_{1}}^{x_{2}} f\left(x, y(x), y^{\prime}(x)\right) d x$, with $y\left(x_{1}\right)$ and $y\left(x_{2}\right)$ fixed at the boundaries.

If f is not an explicit function of x, show that

$$
y^{\prime} \frac{\partial f}{\partial y^{\prime}}-f
$$

is constant.
A bead slides down a frictionless wire, starting at rest at $x=0, y=0$ and reaching a point B at $x=x_{B}, y=y_{B}$ after a time t. By considering the bead's total energy, show that its velocity at any point during its motion is given by $v=\sqrt{2 g y}$.

Hence, show that the time $T[y]$ taken to reach B depends on the shape of the wire $y(x)$ according to

$$
T[y]=\frac{1}{\sqrt{2 g}} \int_{0}^{x_{B}} \sqrt{\frac{1+y^{\prime 2}}{y}} d x
$$

Consider the variational problem that determines the shape of the wire that minimizes the time (the brachistochrone) and show that the quantity $y\left(1+y^{\prime 2}\right)$ is constant for such a shape. Hence, determine the parametric equations of the brachistochrone,

$$
x=c\left(\theta-\frac{1}{2} \sin 2 \theta\right), \quad y=c \sin ^{2} \theta
$$

where c is a constant and θ parameterizes the curve.
Show that if $x_{B}=l$ and $y_{B}=0$ the minimum time is equal to $\sqrt{2 \pi l / g}$.

