
NATURAL SCIENCES TRIPOS Part IB & II (General)

Tuesday 30 May 2006 9 to 12

MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the
same number of marks.

The approximate number of marks allocated to a part of a question is indicated in
the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, 6A).

Answers must be tied up in separate bundles, marked A, B or C according to the
letter affixed to each question.

Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle.

A separate yellow master cover sheet listing all the questions attempted must also
be completed.

Every cover sheet must bear your examination number and desk number.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1B

Let x, y, z be Cartesian co-ordinates, and let Φ be a scalar field.

Define the gradient ∇Φ in Cartesian co-ordinates.

Let q1, q2, q3 be orthogonal curvilinear co-ordinates. Show that the gradient of Φ
in orthogonal curvilinear co-ordinates is

∇Φ =
∂Φ
∂q1

e1

h1
+

∂Φ
∂q2

e2

h2
+

∂Φ
∂q3

e3

h3

and define the quantities ei and hi which appear in this expression. [8]

Oblate spheroidal co-ordinates (R, θ, φ) are defined by

x = cosh R cos θ cos φ

y = cosh R cos θ sinφ

z = sinh R sin θ .

Show that the co-ordinate surfaces associated with R, θ, φ intersect at right angles. [8]

Show that for these co-ordinates,

hR = hθ =
√

sinh2 R + sin2 θ, hφ = cosh R cos θ .

[4]
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2A

Vibrations of a violin string are governed by the one-dimensional wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
,

where u(x, t) is the deflection of the string and c is a constant. The string is fixed at the
ends x = 0 and x = L. The initial deflection is f(x) and the initial velocity is g(x). Use
the method of separation of variables to find the deflection at later times in terms of an
infinite series

u(x, t) =
∞∑

n=1

[anFn(t) + bnGn(t)]Hn(x) ,

where Fn(t), Gn(t), Hn(x), an and bn should all be specified. [12]

An initial displacement of the string is given by

f(x) =


2kx

L
if 0 < x < L

2

2k(L− x)
L

if L
2 < x < L

Sketch this function. [2]

Find the solution corresponding to the string being released from rest with the
above initial displacement. [6]
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3B

The Fourier transform of a function f is given by

f̃(k) =
∫ ∞

−∞
f(x)e−ikxdx .

Give the expression for the inverse Fourier transform.

Let α > 0 and define for non-negative integer n:

fn(x) =
{

xne−αx x > 0
0 x 6 0

Show that
f̃0(k) =

1
α + ik

and
f̃n(k) =

n

α + ik
f̃n−1(k) , n = 1, 2, . . .

Hence compute f̃n(k). [8]

Prove the following identity (Parseval’s theorem) for functions f and g:

∫ ∞

−∞
[f(x)]∗g(x)dx =

1
2π

∫ ∞

−∞
[f̃(k)]∗g̃(k)dk ,

where ∗ denotes complex conjugation. [8]

Hence show that

∫ ∞

−∞

1
(α2 + k2)n+1

dk =
2π(2n)!

(n!)2(2α)2n+1
.

[4]

[In this question all functions may be assumed to be sufficiently integrable so that
their Fourier transforms and inverse Fourier transforms are well-defined.]
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4B

(i) Let a ∈ Rn be a fixed n-component real vector, a 6= 0. Let A+ and A− be real
n× n matrices with components

(A±)ij = δij ± aiaj .

Obtain the eigenvalues of A± and describe the corresponding eigenvectors. [4]

Show that A+ is always invertible and obtain necessary and sufficient conditions
for A− to be invertible. [4]

(ii) Let b ∈ R3 be a fixed vector, b 6= 0. Let B+ and B− be real 3× 3 matrices with
components

(B±)ij = δij ± bibj + εijkbk .

By choosing a suitable basis for R3, or otherwise, determine the real eigenvalues of B±

and the corresponding eigenvectors. [6]

Show that B+ is invertible and obtain necessary and sufficient conditions for B−

to be invertible. [6]

5B

What does it mean for a n× n square matrix to be diagonalizable? [2]

Suppose that A is a n×n square matrix such that Ap = 0 for some positive integer
p. Show that A has 0 as an eigenvalue. Show also that A cannot be diagonalizable unless
A = 0. [6]

Let B and C be the matrices

B =

 4 + 2α −2 −2− 4α
3α −3 9− 6α

2 + α −1 −1− 2α


for α ∈ R, and

C =

 0 2 6
3 3 3
3 1 −3


By considering the characteristic polynomials of B and C, determine whether B and C
are diagonalizable. [12]
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6A

Define a singular point and a regular singular point of a homogeneous second-order
linear ordinary differential equation. Identify two singular points of the following equation
and determine their nature:

2x(1− 2x)y′′ + (12x2 − 4x + 1)y′ − 2(4x2 + 1)y = 0 (∗)

[3]

(i) Find two linearly independent solutions to (∗) in the form of power series about
x = 0. The coefficients of the power series should be given in terms of recurrence relations,
which you are not required to solve. [10]

(ii) Write down the coefficient of the xn term in the Taylor series expansions about
x = 0 of ex and e2x. Demonstrate that these series converge for all x. [3]

(iii) Use your answers to (i) and (ii) to verify that the general solution to (∗) can be
written as

y = A
√

xex + Be2x .

[4]
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7C Show how to express the eigenvalue equation

d2y

dx2
+ u(x)

dy

dx
+ v(x)y + λw(x)y = 0 ,

(where u(x), v(x), w(x) are real functions and w(x) > 0 for a 6 x 6 b) in Sturm–Liouville
form, [6]

d

dx

[
p(x)

dy

dx

]
+ q(x)y + λr(x)y = 0 .

Suppose that y satisfies the boundary conditions

k1y(a) + k2y
′(a) = 0 , l1y(b) + l2y

′(b) = 0 ,

where k1, k2, l1, l2 are constants. Show that two eigenfunctions ym, yn, with distinct
eigenvalues λm 6= λn satisfy the orthogonality condition∫ b

a

r(x)ymyndx =
1

λm − λn

[
p(b)(y′n(b)ym(b)− y′m(b)yn(b))

− p(a)(y′n(a)ym(a)− y′m(a)yn(a))
]

= 0 .

[4]

Find the eigenfunctions and the values of the eigenvalue λ that satisfy the equation

y′′ + 2αy′ + (α2 + λ)y = 0 ,

where y(0) = y(π) = 0. [6]

Put the equation in Sturm–Liouville form and hence determine the orthogonality
condition for the eigenfunctions. [4]
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8A

By first finding the appropriate Green’s function, solve the differential equation

y′′(x) + k2y(x) = f(x) ,

where k is a non-zero real number for the cases:

y(0) = y′(0) = 0 , f(x) = 2k cos kx ,

[10]

and

y(0) = y
( π

6k

)
= 0 , f(x) =

k2

2
.

[10]

[You may use the identity sin(A±B) = sin A cos B ± cos A sinB.]
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9C

The function y(x) makes the value of

F =
∫ b

a

(
p(x) [y′(x)]2 − q(x) [y(x)]2

)
dx

stationary subject to the condition G = 1, where

G =
∫ b

a

r(x) [y(x)]2 dx ,

and with the boundary conditions y(a) = y(b) = 0 (where p(x), q(x), r(x) are real functions
and r(x) > 0 for a 6 x 6 b). Use Euler’s equation to show that y(x) satisfies the Sturm–
Liouville equation

d

dx

[
p(x)

dy

dx

]
+ q(x)y + λr(x)y = 0 .

Show that the stationary values of Λ = F/G are eigenvalues corresponding to the values
of λ. [8]

Consider the equation

d

dx

(
x

dy

dx

)
− xy + λy = 0 ,

where y(0) is finite and y → 0 in the limit x →∞, and λ denotes an eigenvalue. Use the
Rayleigh–Ritz method to obtain an estimate of the smallest eigenvalue by using a trial
function y

(1)
trial = e−βx. [5]

Now use instead the trial function y
(2)
trial = A − x for 0 ≤ x ≤ A, y = 0 for

A ≤ x ≤ ∞ to give a new estimate of the smallest eigenvalue. [5]

Which of these two estimates is the better and why? [2]

[You may wish to use the fact that
∫∞
0

x e−kx dx = 1/k2 .]
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10C State the Euler equation obtained by minimizing
∫ x2

x1
f(x, y(x), y′(x)) dx, with

y(x1) and y(x2) fixed at the boundaries. [3]

If f is not an explicit function of x, show that

y′
∂f

∂y′
− f

is constant. [3]

A bead slides down a frictionless wire, starting at rest at x = 0, y = 0 and reaching
a point B at x = xB , y = yB after a time t. By considering the bead’s total energy, show
that its velocity at any point during its motion is given by v =

√
2gy. [4]

Hence, show that the time T [y] taken to reach B depends on the shape of the wire
y(x) according to

T [y] =
1√
2g

∫ xB

0

√
1 + y′2

y
dx .

Consider the variational problem that determines the shape of the wire that minimizes
the time (the brachistochrone) and show that the quantity y(1 + y′

2) is constant for such
a shape. Hence, determine the parametric equations of the brachistochrone,

x = c(θ − 1
2 sin 2θ) , y = c sin2 θ ,

where c is a constant and θ parameterizes the curve. [5]

Show that if xB = l and yB = 0 the minimum time is equal to
√

2πl/g. [5]

END OF PAPER
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