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MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the
same number of marks.

The approximate number of marks allocated to a part of a question is indicated in
the right-hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

Questions marked with an asterisk (*) require a knowledge of B course material.

At the end of the examination:

Each question has a number and a letter (for example, 3B).

Tie up the answers in separate bundles, marked A, B, C, D, E or F according
to the letter affixed to each question. Do not join the bundles together.

For each bundle, complete and attach a blue cover sheet, with the appropriate letter
written in the section box.

Complete a separate yellow master cover sheet listing all the questions attempted.

Every cover sheet must bear your examination number and desk number.
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1A

(a) A matrix A satisfies
A = 5AT ,

where T denotes the transpose. Find A. [4]

(b) If B = −BT and det(I + B) 6= 0, where I is the unit matrix, show that

C = (I−B)(I + B)−1

is an orthogonal matrix.

Is there any non-zero choice of B such that

(i) C is symmetric?

(ii) C is antisymmetric?

In each case, if so, give an example; if not, explain why. [7]

(c) If D is a square matrix and det(I−D) 6= 0, show that

(I−D)−1 =
∞∑

n=0

Dn ,

where D0 = I. (Assume that the right-hand side of the equation exists.) [4]

Use your result to find (I−D)−1 if

D =

 0 1 0
0 0 1
0 0 0

 .

[5]
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2A

(a)

(i) Find the eigenvalues and eigenvectors of the matrix

M =

 0 1 0
1 0 1
0 1 0

 .

Verify that the eigenvectors are orthogonal. [5]

(ii) Construct a matrix R whose rows are the normalised eigenvectors of the
matrix M. Is R an orthogonal matrix? Evaluate

RMRT .

Is M an invertible matrix? Give a reason for your answer. [8]

(b) For what real values of λ does the equation cos θ − sin θ 0
sin θ cos θ 0

0 0 5

  x
y
z

 = λ

 x
y
z

 ,

where θ 6= nπ for any integer n, have non-vanishing real solutions

 x
y
z

? How

many are there, and what are they? [7]
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3B

(a) Give expressions for the following complex numbers in the form a+ib, where a and
b are real:

(i)
2 + i

(1− i)2
,

[3]

(ii) (
i + 1
i− 1

)3

.
[3]

(b) Find all solutions of the following equations and give the results in the form
z = a + ib, where a and b are real:

(i)
z3 = −8i , [3]

(ii)
z2 = 2(1 +

√
3 i) , [3]

(iii)
z = i(1−i) . [3]

(c) Show that the solutions of the equation

2 sin z + cos z = i sin z

are given by

z =
(
nπ − π

8

)
− 1

4
i ln 2 ,

where n is an arbitrary integer. [5]
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4B*

(a) State Stokes’ theorem, explaining carefully the meaning of any symbols you use
and indicating the orientation of any integrations. [4]

(b) A vector field F is given in Cartesian coordinates by

F = (2xz3, yz2, x2z2) .

Evaluate ∇× F. [4]

(c) Can F be obtained from a scalar potential φ such that F = ∇φ? [2]

(d) Verify Stokes’ theorem for F on the triangle ABC defined by A = (1, 1, 0),
B = (0, 1, 0) and C = (0, 1, 1) . [10]

5C

A, B and C are three points with position vectors a = a i, b = b j and c = ck
respectively, where a, b and c are positive scalars. P is the plane passing through A, B
and C.

(a) Find a normal to the plane P . [3]

(b) What is the vector equation of P ? [3]

(c) Define D as the point on P closest to the origin. What is the distance of D from
the origin? [4]

(d) A position vector r is given by

r = λa + µb + ν c

where λ, µ and ν are scalars. What condition must λ, µ and ν satisfy if r is to lie
in P ? [3]

(e) Find the values of λ, µ and ν corresponding to the point D . [4]

(f) If d is the position vector of D , find the angle between the vectors a−d and b−c .
[3]
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6C

(a) Let a, b and c be three vectors in 3-dimensional space.

(i) Show that
(a× b) · c = a · (b× c) . [5]

(ii) Evaluate
(a× b)× c− a× (b× c)

in terms of a, b and c and their scalar products. [9]

(b) In a spherical coordinate system with coordinates (r, θ, φ), the position vectors
a, b and c correspond to points with coordinates (r0, θ0, 0), (r0, θ0, 2π/3) and
(r0, θ0, 4π/3) respectively.

By converting these coordinates into Cartesian form, or otherwise, find the volume
of a parallelepiped having these vectors as edges. [6]

7D

(a) A test is developed to find whether a patient carries a gene found in 0.1% of the
population. The probability that a carrier tests negative is 1% while the probability
that a non-carrier tests positive is 5%.

(i) What is the probability that a randomly selected patient tests positive?
(Note that such a patient is either a carrier or a non-carrier.) [4]

Write equations describing the probability of the cases:

(ii) that a patient with a positive test carries the gene, [2]

(iii) that a patient with a negative test carries the gene, [2]

and evaluate each numerically (to 3 significant figures).

(b) Players A and B roll a six-sided die in turn. If a player rolls:

1 or 2: that player wins and the game ends;

3: the other player wins and the game ends;

4, 5 or 6: the turn passes to the other player.

A starts the game by throwing the die. What is the probability:

(i) that B gets a first throw and wins on it? [2]

(ii) that A wins before A’s second throw? [3]

(iii) that A wins, if the game is played until there is a winner? [7]
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8D*

(a) Use the method of Lagrange multipliers to find the locations and values of the
maxima and minima of the function

x2y + 2y

subject to the constraint
x2 + y2 = 1 . [8]

(b) The planes
2x + y − z = 1

and
x− y + z = 2

intersect in the line L. Without finding L explicitly, use the method of Lagrange
multipliers to find the point on L closest to the origin. [12]

9E

(a) Give Taylor’s formula for the series expansion of a function f(x) about the point
x = a. [3]

(b) Find, by any method, the first four non-vanishing terms in the Taylor series of:

(i)
lnx about x = 1 , [5]

(ii)
arctanx about x = 1 , [5]

(iii)
x

ex − 1
about x = 0 .

[7]
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10E

Solve the following differential equations for y(x), subject to y(0) = y′(0) = 0:

(a)
d2y

dx2
+ 4y = cos x ,

[6]

(b)
d2y

dx2
+ 4y = cos2 x ,

[6]

(c)
d2y

dx2
− 2

dy

dx
+ y = (1 + x) ex .

[8]

11F

The periodic function f(x) of period 2π is defined by

f(x) = sin 2x for 0 6 x 6 π ,

f(x) = − sin 2x for − π 6 x 6 0 .

(a) Sketch f(x). [4]

(b) Find the Fourier expansion of f(x). [10]

(c) Hence show that
∞∑

m=1

1
(2m + 1)2 − 4

=
1
3

.

[6]

12F*

(a) Describe the method of separation of variables for Laplace’s equation in two
dimensions,

∂2f

∂x2
+

∂2f

∂y2
= 0 .

[5]

(b) A function f(x, y) satisfies Laplace’s equation inside a square region 0 6 x 6 a,
0 6 y 6 a. On the sides x = 0, x = a and y = 0, f vanishes. On the side y = a, f
takes the constant value F .

Find f(x, y) everywhere inside the square region. [15]

END OF PAPER
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