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1 Outline the Fisherian approach to inference in a parametric statistical model,
including a description of ancillary statistics, both when there is no nuisance parameter
and when a nuisance parameter is present.

Give an example of a model where there is a problem of non-uniqueness of ancillary
statistics, stating the distributions of both ancillary statistics.

Let f0(y) denote a known probability density function, and let Y1, . . . , Yn be
independent with density f(y;µ, σ) = 1

σf0
(
(y − µ)/σ

)
for some µ ∈ R and σ > 0. If

µ̂ ≡ Ȳ = n−1
∑n
i=1 Yi and σ̂2 = n−1

∑n
i=1(Yi − Ȳ )2, show that

A =
(
Y1 − µ̂
σ̂

, . . . ,
Yn − µ̂
σ̂

)
is ancillary. What distribution would be used for inference about (µ, σ) in the Fisherian
approach?

2 Let F and G be non-degenerate distribution functions. In the context of extreme
value theory for maxima, what does it mean for F to belong to the domain of attraction
of G? Now suppose G is continuous, and suppose that an > 0 and bn are such that
Fn(anx+bn)→ G(x) for all x ∈ R, and also that αn > 0 and βn are such that αn

an
→ a > 0

and βn−bn

an
→ b. Use Slutsky’s theorem to prove that Fn(αnx + βn) → G(ax + b) for all

x ∈ R.

By giving appropriate definitions and quoting any required results carefully, identify
a non-degenerate distribution function G such that F belongs to the domain of attraction
of G, in both cases below:

(i) F (x) =
(
1− C

x2 log x log log x

)
1{x>10}, where C > 0 is a normalisation constant

(ii) F (x) = (1− e−x1/2
)1{x>0}.

In case (ii) above, find constants αn > 0 and βn, in terms of standard elementary
functions, such that Fn(αnx+ βn)→ G(x) for all x ∈ R.

[You may assume that if `(x) is a continuous, slowly varying function, then for
each r > 0, ∫ ∞

n

1
xr+1

`(x) dx =
1
rnr

`(n){1 + o(1)}

as n→∞.]
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3 Let (Yn) be a sequence of independent N(0, 1) random variables. Fix ρ ∈ (0, 1),
and define a sequence (Xn), by X1 = Y1 and

Xj = ρXj−1 + (1− ρ2)1/2Yj , for j > 2.

By first writing Xj in terms of Y1, . . . , Yj , find the distribution of the vector (X1, . . . , Xn)T .

It is decided to estimate the marginal density f(x) of X1 using a kernel density
estimator f̂h(x) = 1

nh

∑n
j=1K

(
x−Xj

h

)
. Let ψ(t) = E(eitX1), let ψK(t) =

∫∞
−∞ eitxK(x) dx,

and let Re z denote the real part of a complex number z. Furthermore, let f̂∗h(x) =
1
nh

∑n
j=1K

(
x−X∗

j

h

)
, where X∗1 , . . . , X

∗
n are independent with density f(x). For data with

this type of dependence, it may be shown that

∫ ∞
−∞

Var{f̂h(x)} dx =
∫ ∞
−∞

Var{f̂∗h(x)} dx+
1
πn

n−1∑
j=1

(
1− j

n

)
g(j),

where
g(j) =

∫ ∞
−∞
|ψK(ht)|2

[
Re E{eit(X1−Xj+1)} − |ψ(t)|2

]
dt.

Suppose that K(x) is the standard normal density. Evaluate g(j).

[Hint: Recall that if Z ∼ N(µ, σ2), then E(eitZ) = eitµ−t
2σ2/2.]

Hence show that if h = hn → 0 as n→∞ but nh→∞ as n→∞, then∫ ∞
−∞

Var{f̂h(x)} dx =
∫ ∞
−∞

Var{f̂∗h(x)} dx+O(n−1)

as n → ∞. What does this result imply about the bandwidth that minimises the
asymptotic mean integrated squared error, and the optimal rate of convergence of the
mean integrated squared error to zero?

Statistical Theory [TURN OVER
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4 By defining appropriate notation and stating your assumptions, explain what is
meant by an Edgeworth expansion for the density of a standardised sum S∗n of independent,
identically distributed random variables Y1, . . . , Yn.

[An explicit expression for the O(n−1) term is not required.]

State the corresponding expansion for the distribution function FS∗n of S∗n. Fix α ∈
(0, 1), and let yα and zα satisfy FS∗n(yα) = α and Φ(zα) = α respectively, where Φ is the
standard normal distribution function. Assuming that yα = p0(zα)+p1(zα)n−1/2+O(n−1)
as n→∞, find explicit expressions for the functions p0 and p1.

Now suppose that Y1, . . . , Yn are independent with density

f(y; θ) =
ey−θ

(1 + ey−θ)2
, y ∈ R, θ ∈ R.

Show that (
1
n

n∑
i=1

Yi − n−1/2 π√
3
z1−α/2 ,

1
n

n∑
i=1

Yi − n−1/2 π√
3
zα/2

)
is a confidence interval for θ of asymptotic (1− α)-level coverage.

[Hint: You may use the fact that
∫∞
0

y2ey

(1+ey)2 dy = π2/6.]

Show further that the coverage error of this confidence interval is O(n−1) as n→∞.

5 Explain what is meant by an exponential dispersion family of order 1, the variance
function and a generalised linear model. Define the canonical link function, and state one
advantage of its use.

Give three examples of exponential dispersion families of order 1, showing explicitly
that they satisfy the definition, and identifying the canonical link function in each case.

Explain how, in general, you would test the hypothesis that one of the components
of the parameter of interest was zero.
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6 Outline briefly the methods of local polynomial kernel estimation and natural cubic
spline estimation of a regression function in nonparametric regression.

[You may restrict attention to the homoscedastic, fixed design case. Explicit for-
mulae for the estimators are not required, but you should state carefully the minimisation
problem being solved in each case.]

The following model occurs in the oil industry. Let n > 3 and let a < x1 < . . . <
xn < b be known. Suppose that Y1, . . . , Yn−1 are independent, with

Yi =
1

xi+1 − xi

∫ xi+1

xi

g(x) dx+ εi, i = 1, . . . , n− 1,

where εi ∼ N(0, σ2) for some known σ > 0. Fixing λ > 0, we wish to estimate the
regression function g(x) by minimising

Sλ(g̃) =
n∑
i=1

{
Yi −

1
xi+1 − xi

∫ xi+1

xi

g̃(x) dx
}2

+ λ

∫ b

a

g̃′(x)2 dx

over g̃ ∈ S1[a, b], the set of real-valued functions on [a, b] having one continuous derivative.
Prove that any minimiser of Sλ(g̃) over g̃ ∈ S1[a, b] must be a quadratic spline with knots
at x1, . . . , xn that is constant on [a, x1] and [xn, b].

[You may assume that, given any y = (y1, . . . , yn−1) ∈ Rn−1, there exists a unique
quadratic spline g : [a, b]→ R with knots at x1, . . . , xn that is constant on [a, x1] and [xn, b]
and satisfies 1

xi+1−xi

∫ xi+1

xi
g(x) dx = yi, for i = 1, . . . , n− 1.]

END OF PAPER
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