

## M. PHIL. IN STATISTICAL SCIENCE

Thursday 3 June 2004 1.30 to 4.30

# STATISTICAL THEORY

Attempt FOUR questions, not more than TWO of which should be from Section B. There are ten questions in total. The questions carry equal weight.

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

#### Section A

1 Let  $X_1, \ldots, X_n$  be independent random variables with density f(x). Define what is meant by a kernel K(x), and by the kernel density estimate  $\hat{f}_h(x)$  of f(x), with kernel K and bandwidth h > 0.

Define the mean integrated squared error (MISE) of  $\hat{f}_h$ , and derive an exact expression for this quantity in terms of f and the scaled kernel  $K_h$ , where  $K_h(x) = h^{-1}K(x/h)$ .

For a symmetric, second-order kernel, under regularity conditions, the minimum value of the asymptotic MISE may be expressed as

$$\inf_{h>0} AMISE(\hat{f}_h) = \frac{5}{4} \{\mu_2(K)^2 R(K)^4 R(f'')\}^{1/5} n^{-4/5},$$

where  $\mu_2(K) = \int_{-\infty}^{\infty} x^2 K(x) dx$ , and  $R(g) = \int_{-\infty}^{\infty} g(x)^2 dx$  for a square integrable function  $g : \mathbb{R} \to \mathbb{R}$ . Show that R(f'') may be made arbitrarily small by means of a scale transformation af(ax) of f(x), but that

$$D(f) = \sigma(f)^5 R(f'')$$

is scale invariant, where

$$\sigma(f)^2 = \int_{-\infty}^{\infty} x^2 f(x) \, dx - \left(\int_{-\infty}^{\infty} x f(x) \, dx\right)^2.$$

Let

$$f_0(x) = \frac{35}{32}(1-x^2)^3 \mathbf{1}_{\{|x|<1\}},$$

and let h(x) be another twice continuously differentiable density satisfying  $\int_{-\infty}^{\infty} xh(x) dx = 0$  and  $\sigma(h) = \sigma(f_0)$ . By considering  $e(x) = h(x) - f_0(x)$  or otherwise, show that  $R(h'') \ge R(f_0'')$ .

#### STATISTICAL THEORY



**2** Let  $X_1, \ldots, X_n$  be independent random variables with continuous distribution function F(x). Define the empirical distribution function,  $\hat{F}_n(x)$ , and show that the distribution of

3

$$D_n = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)|$$

does not depend on F. Explain how this result may be used to construct a confidence band for F of  $(1 - \alpha)$ -level coverage.

State the Glivenko-Cantelli theorem.

Now suppose  $X_1, \ldots, X_n$  are independent with distribution function F, and that  $\theta = \theta(F)$  is a parametric function which may be expressed as  $\theta(F) = \mathbb{E}_F\{h(X_1, \ldots, X_r)\}$ . Explain why we may always choose h to be symmetric in its arguments. For  $n \ge r$ , define what is meant by a U-statistic for  $\theta$  with kernel h.

Let  $\theta(F)$  denote the variance of a random variable with distribution function F. Find a function  $h : \mathbb{R}^2 \to \mathbb{R}$  which is symmetric in its arguments and which satisfies  $\theta(F) = \mathbb{E}_F\{h(X_1, X_2)\}$ . Evaluate the corresponding U-statistic and simplify your answer as much as possible.

**3** Write brief accounts about Edgeworth expansions and saddlepoint approximations to the densities of sums of independent, identically distributed random variables. You should include a description of any notable ways in which the approximations differ.

Let  $Y_1, \ldots, Y_n$  be independent random variables with the Laplace density

$$f_Y(y) = \frac{1}{2} e^{-|y|}, \quad y \in \mathbb{R},$$

for which the cumulant generating function is  $K_Y(t) = -\log(1-t^2)$  for |t| < 1. Compute the Edgeworth expansion and saddlepoint approximation to the density of  $S_n = \sum_{i=1}^n Y_i$ , up to, but not including, terms of order  $n^{-1}$ .

4 Describe in detail *three* commonly-used techniques of bandwidth selection in kernel density estimation, mentioning briefly their asymptotic properties.

Hint: you may find the following formulae helpful:

$$h_{AMISE} = \left(\frac{R(K)}{R(f'')\mu_2(K)^2n}\right)^{1/5}, \ AMISE(\hat{f}_h) = \frac{1}{nh}R(K) + \frac{1}{4}h^4\mu_2(K)^2R(f''),$$

and

$$\mathbb{E}\{R(\hat{f}_h'')\} = R(f'') + \frac{1}{nh^5}R(K'') + O(h^2)$$

as  $n \to \infty$ . When estimating R(f'') by  $\hat{R}_g^{(2)} = n^{-1} \sum_{i=1}^n \hat{f}_g^{(4)}(X_i)$ , the optimal AMSE bandwidth is  $P(f'') = \frac{1}{7} - \frac{1}{7}$ 

$$g_{AMSE} \propto R(f''')^{-1/7} n^{-1/7}$$

STATISTICAL THEORY

## **[TURN OVER**

4

**5** Give a brief description of marginal and profile likelihoods, contrasting the ways in which they are used to deal with nuisance parameters.

Let  $X_1, \ldots, X_m, Y_1, \ldots, Y_n$  be independent exponential random variables with  $X_1, \ldots, X_m$  having mean  $1/(\psi \lambda)$  and  $Y_1, \ldots, Y_n$  having mean  $1/\lambda$ . Further, let  $X = \sum_{i=1}^m X_i$  and  $Y = \sum_{i=1}^n Y_i$ . Write down the joint density of X and Y. Consider the transformation

$$T = \frac{X}{Y}, \quad U = Y.$$

By first computing the joint density of T and U, find the marginal density of T and show that the marginal log-likelihood for  $\psi$  based on T is

$$\ell(\psi; t) = m \log \psi - (m+n) \log(\psi t + 1).$$

Compute the maximum likelihood estimate of  $\lambda$  for fixed  $\psi$ , and hence show that the profile log-likelihood for  $\psi$  is identical to  $\ell(\psi; t)$  above.

**6** Describe the Wald, score and likelihood ratio tests for hypotheses concerning a multidimensional parameter  $\theta$ . Explain briefly how they can be used to construct confidence regions for  $\theta$  of approximate  $(1 - \alpha)$ -level coverage.

Let  $Y_0, Y_1, \ldots, Y_n$  be a sequence of random variables such that  $Y_0$  has a Poisson distribution with mean  $\theta$  and for  $i \ge 1$ , conditional on  $Y_0, \ldots, Y_{i-1}$ , the random variable  $Y_i$  has a Poisson distribution with mean  $\theta Y_{i-1}$ . The parameter  $\theta$  satisfies  $0 < \theta \le 1$ . Find the log-likelihood for  $\theta$ , and show that the maximum likelihood estimator,  $\hat{\theta} = \hat{\theta}(Y_0, Y_1, \ldots, Y_n)$ , may be expressed as  $\hat{\theta} = \min(\tilde{\theta}, 1)$ , where  $\tilde{\theta} = \tilde{\theta}(Y_0, Y_1, \ldots, Y_n)$  is a function which should be specified.

For  $\theta \in (0, 1)$ , compute the Fisher information  $i(\theta)$ , and show that

$$i(\theta) \leqslant \frac{1}{\theta(1-\theta)}$$

for all n.

Deduce that the Wald statistic for testing  $H_0$ :  $\theta = \theta_0$  against  $H_1$ :  $\theta \neq \theta_0$ , where  $0 < \theta_0 < 1$ , does not have an asymptotic chi-squared distribution under the null hypothesis.

STATISTICAL THEORY

# Section B

7 i) Suppose (Y|U = u) has a Poisson distribution, with mean  $\mu u$ , and U has probability density function f(u), where

$$f(u) = \theta^{\theta} u^{\theta-1} e^{-\theta u} / \Gamma(\theta), \text{ for } u \ge 0.$$

Show that

a)  $E(Y) = \mu$ ,  $var(Y) = \mu + \mu^2/\theta$ ,

b) Y has frequency function

$$g(y|\mu) = \frac{\Gamma(\theta+y)\mu^{y}\theta^{\theta}}{\Gamma(\theta)y!(\mu+\theta)^{\theta+y}} \text{ for } y = 0, 1, 2, \dots$$

ii) If  $(Y_1, \ldots, Y_n)$  are independent observations, and  $Y_i$  has frequency function  $g(y_i|\mu_i)$ , where  $\log \mu_i = \beta x_i$ , and  $x_1, \ldots, x_n$  are given, describe how to estimate  $\beta$  in the case where  $\theta$  is a known parameter, and derive the asymptotic distribution of your estimator.

8 Let  $Y_1, \ldots, Y_n$  be independent variables, such that

$$Y = \mu 1 + X\beta + \epsilon,$$

where X is a given  $n \times p$  matrix of rank  $p, \beta$  is an unknown vector of dimension  $p, \mu$  is an unknown constant, and 1 is the *n*-dimensional vector with every element 1. Assume that  $X^T = 0$ , and that  $\epsilon \sim N(0, \sigma^2 I)$ , where  $\sigma^2$  is unknown.

i) Derive an expression for  $\hat{\beta}$ , the least squares estimator of  $\beta$ , and derive its distribution.

- ii) How would you test  $H_0: \beta = 0$ ?
- iii) How would you check the assumption  $\epsilon \sim N(0, \sigma^2 I)$ ?

(You may quote any standard theorems needed.)

**9** What is meant by an improper prior in a Bayesian analysis?

Let  $X_1, \ldots, X_n$  be independent identically distributed  $N(\mu, \sigma^2)$ , with both  $\mu$  and  $\sigma^2$  unknown. Suppose that  $\mu$  and  $\sigma^2$  are given independent prior densities. Show that in the case of the improper prior  $\pi(\mu) \propto 1$  for  $\mu$ , the marginal posterior density of  $\sigma^2$  depends only on the sample variance  $s^2 = (n-1)^{-1} \sum_{i=1}^n (x_i - \bar{x})^2$ .

Show further that in the case of improper priors  $\pi(\mu) \propto 1$ ,  $\pi(\sigma^2) \propto \sigma^{-2}$ , the posterior distribution of  $\sigma^2$  is that of  $(n-1)s^2/V$ , where  $V \sim \chi^2_{n-1}$ .

## STATISTICAL THEORY

**[TURN OVER** 

10 Write an account of the main results in the frequentist (Neyman-Pearson) theory of optimal hypothesis testing. Your account should include discussion of all of the following: size of a test, Neyman-Pearson Lemma, uniformly most powerful tests, and unbiased tests.

(Proofs of results are not expected.)

STATISTICAL THEORY