M. Phil. IN STATISTICAL SCIENCE

PROBABILITY

Attempt THREE questions.
There are five questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 You throw $6 n$ dice at random.
a) Find the probability that each number appears exactly n times.
b) Using Stirling's formula, show that this probability is approximately $C n^{-5 / 2}$ for some constant C to be found.

2 State and prove Chebyshev's inequality.
State and prove the first Borel-Cantelli lemma.
Let X_{1}, X_{2}, \ldots, be independent identically distributed random variables with $\mathbb{E} X=a$ and $\mathbb{V} \operatorname{ar} X=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{j=1}^{n} X_{j}$. Show that $N^{-2} S_{N^{2}} \rightarrow a$ (a.s.) as $N \rightarrow \infty$.
$3 \quad$ Suppose that S and T are independent exponential random variables with means $1 / \alpha$ and $1 / \beta$ respectively.
a) Find the distribution of $\min \{S, T\}$.
b) Find the probability that $S \leq T$.
c) Show that the two events $\{S \leq T\}$ and $\{\min \{S, T\} \geq t\}$ are independent.

4 Let X_{1}, X_{2}, \ldots, be a sequence of independent identically distributed random variables with $\operatorname{Pr}(X=1)=p=1-\operatorname{Pr}(X=-1)$ and let S_{n} be the generated asymmetric simple random walk starting at 0 , i.e., $S_{n}=\sum_{j=1}^{n} X_{j}$. Suppose $p>1 / 2$ and let $\phi(x)=\left(\frac{1-p}{p}\right)^{x}$.
a) Show that $\phi\left(S_{n}\right)$ is a martingale.
b) Denote $T_{x}=\inf \left\{n: S_{n}=x\right\}$. State the Optional Stopping Theorem and use it to show that for $a<0<b$,

$$
\operatorname{Pr}\left(T_{a}<T_{b}\right)=\frac{\phi(b)-\phi(0)}{\phi(b)-\phi(a)} .
$$

c) For $a<0$, show that $\operatorname{Pr}\left(\min _{n} S_{n} \leq a\right)=\operatorname{Pr}\left(T_{a}<\infty\right)=\left(\frac{1-p}{p}\right)^{-a}$.
$5 \quad$ The Poisson process of rate λ is the Markov chain $\left(N_{t}\right)_{t \geq 0}$ on $\mathbb{Z}_{+}=\{0,1, \ldots\}$ with generator $q_{i i}=-\lambda, q_{i, i+1}=\lambda$.
a) Consider the process starting at 0 and define, for each $j, p_{j}(t)=\operatorname{Pr}_{0}\left(N_{t}=j\right)$. Show that the forward equations imply

$$
p_{0}^{\prime}(t)=-\lambda p_{0}(t), \quad p_{j}^{\prime}(t)=-\lambda p_{j}(t)+\lambda p_{j-1}(t), \quad j \geq 1 .
$$

Solve this system, thus proving that if $N_{0}=0$ then N_{t} has Poisson distribution with parameter λt.
b) Let $\left(N_{t}^{(1)}\right)_{t \geq 0}$ and $\left(N_{t}^{(2)}\right)_{t \geq 0}$ be two independent Poisson processes of rates λ_{1} and λ_{2} respectively and starting at 0 . Find the distribution of $N_{t}=N_{t}^{(1)}+N_{t}^{(2)}$.
c) Arrivals of the No. 1 bus form a Poisson process of rate 1 bus per hour, and arrivals of the No. 7 bus form a Poisson process of rate 7 buses per hour. What is the probability that exactly 3 buses pass by in one hour?

