

M. PHIL. IN STATISTICAL SCIENCE

Friday 1 June 2001 9 to 11

PROBABILITY

Attempt three of the following five questions.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1 (a) What does it mean to say that $(X_n)_{n \ge 0}$ is a discrete-time Markov chain with state space S and transition matrix P?
 - (b) State the strong Markov property of such a process $(X_n)_{n \ge 0}$.
 - (c) Fix a state *i* and let f_i denote the return probability for *i*, that is, the probability when $X_0 = i$, that $X_n = i$ for some $n \ge 1$. Show that, if $f_i = 1$, then X_n visits *i* infinitely often, or not at all.

Show also that, if $f_i < 1$, then X_n visits *i* only finitely often.

(d) Consider the Markov chain $(X_n)_{n \ge 0}$ in \mathbb{Z} whose non-zero transition probabilities are given by

$$P_{0,-1} = 1, \quad P_{i,i-1} = \frac{1}{4}, \quad P_{i,i+1} = \frac{3}{4}, \quad i \neq 0.$$

If $X_0 = 1$, what is the probability that X_n visits 0 infinitely often.

2 Let X, X_1, X_2, \ldots be a sequence of independent, identically distributed random variables. Suppose that

$$\mathbb{E}(X) = \mu, \quad \mathbb{E}(X^4) < \infty.$$

(a) Show that

$$\frac{X_1 + \ldots + X_n}{n} \to \mu \quad a.s. \text{ as } n \to \infty$$

(b) Suppose that $\mu = 0$. Is it true that $(X_1 + \ldots + X_n)/\sqrt{n}$ converges in distribution as $n \to \infty$? Is it true that $(X_1 + \ldots + X_n)/\sqrt{n}$ converges in $L_2(\mathbb{P})$? Justify your answers by reference to standard theorems.

PROBABILITY

- **3** Let $(X_n)_{n \ge 0}$ be a Markov chain with state-space S and transition matrix P.
 - (a) Write $x \to y$ if $P_{x,y}^n > 0$ for some $n \ge 0$ and write $x \sim y$ if both $x \to y$ and $y \to x$. Show that \sim is an equivalence relation on S.
 - (b) Assume that \sim has just one equivalence class and that P has an invariant distribution π . Suppose there exists a bijection $T : S \to S$ such that, for all $x, y \in S$,

$$P_{T(x),T(y)} = P_{x,y}.$$

Show that $\pi_{T(x)} = \pi_x$ for all $x \in S$.

(c) Let $p \in (0, 1)$. Set $X_0 = I$ and suppose, for $n \ge 0$,

$$X_{n+1} = \begin{cases} AX_n, & \text{with probability } p, \\ BX_n, & \text{with probability } 1-p, \end{cases}$$

where

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

Sketch a graph of the state-space of the Markov chain $(X_n)_{n\geq 0}$, indicating the possible transitions. Determine whether $(X_n)_{n\geq 0}$ is transient, null recurrent or positive recurrent.

PROBABILITY

[TURN OVER

4

4 Let X, X_1, X_2, \ldots be independent, identically distributed random variables. Set

$$M_X(t) = \mathbb{E}(e^{tX}), \ c_X(t) = \log M_X(t).$$

(a) Show, for $S_n = X_1 + \ldots + X_n$, for $t \ge 0$ and $x \in \mathbb{R}$, that

$$\mathbb{P}(S_n \ge nx) \le e^{-n\{xt - c_X(t)\}}.$$

Show also that this inequality remains valid for t < 0, provided $x \ge \mathbb{E}(X)$. Deduce that, for $x \ge \mathbb{E}(X)$,

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \ge x) \leqslant -I_X(x),$$

where

$$I_X(x) = \sup_{t \in \mathbb{R}} \{ xt - c_X(t) \}.$$

- (b) Write I_{λ} for I_X when $X \sim \mathcal{E}(\lambda)$ and write I_p for I_x when $X \sim B(1, p)$. Compute I_{λ} and I_p . Here, $\mathcal{E}(\lambda)$ denotes the exponential distribution of rate λ and B(n, p) denotes the binomial distribution with parameters n and p.
- (c) When fitting a light bulb, there is a chance of 1 p that it fails instantaneously. Given that it does not, its lifetime has $\mathcal{E}(\lambda)$ distribution. Let $p_n(x)$ denote the probability that the average lifetime of n bulbs exceeds x, where $x > 1/\lambda$. Show that, for all n,

$$p_n(x) \leqslant \mathbb{E}(e^{-nF_x(N/n)})$$

where N has B(n, p) distribution and

$$F_x(y) = y I_\lambda(x/y).$$

Deduce that

$$\limsup_{n \to \infty} \quad \frac{1}{n} \log p_n(x) \leqslant -\inf_{y \in [0,1]} \{ I_p(y) + y I_\lambda(x/y) \}.$$

5 State Doob's L_1 and L_2 martingale convergence theorems.

Let $f:[0,1] \to \mathbb{R}$ and assume that for some K > 0, we have $|f(x) - f(y)| \leq K|x-y|$ for all x and y. For every n, let $t_{i,n} = i/2^n$. Define $M_n: [0,1) \to \mathbb{R}$ by

$$M_n(x) = 2^n (f(t_{i+1,n}) - f(t_{i,n})), \quad t_{i,n} \leq x < t_{i+1,n}, \quad i = 0, 1, \dots, 2^n - 1.$$

Show that, for almost all x, the limit $M(x) = \lim_{n \to \infty} M_n(x)$ exists and satisfies

$$\int_0^1 M(x)dx = f(1) - f(0).$$

What is M better known as?

PROBABILITY