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1 (a) Let N be a random variable taking values in {0, 1, 2, . . .}.

◦ Prove that

E(N) =
∞∑

n=0

P(N > n).

(b) Let T1, T2, . . . be independent Bernoulli random variables with

P(Tn = 0) =
1
n

= 1− P(Tn = 1).

Let N = inf{n ≥ 1 : Tn = 1}.

◦ Prove that E(N) = e = 2.718 . . ..

(c) Let U and V be independent N(0, 1) variables, and W = U + V .

◦ What is the distribution of W? (No proof is needed.)

◦ Find the conditional expectations

E(W |U > 0, V > 0) and E(W 2|U > 0, V > 0).

(d) Let X and Y be random variables with joint density

fX,Y (x, y) =
2ye−xy

π(1 + y2)
for x > 0, y > 0

◦ Compute E(X|Y = y).
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2 (a) Let (Nt)t>0 be a continuous-time Markov process on the state space {0, 1, 2, . . .}
with generator G = (gi,j)i,j≥0 given by gi,i = −λ and gi,i+1 = λ, for some constant λ > 0.

◦ Write down the forward Kolmogorov equations for the transition probabilities
p0,j(t) = P(Nt = j|N0 = 0).

◦ Assuming the uniqueness of the solution to these forward equations, verify that
conditional on the event {N0 = 0}, the random variable Nt has a Poisson
distribution with a parameter to be determined.

(b) Now assume N0 = 0, and let Tk = inf{t ≥ 0 : Nt = k} for each k = 1, 2, . . ..

◦ Prove that T1 is an exponential random variable.

◦ Find the moment generating function of Tk.

(c) Let K be a geometric random variable such that P(K = k) = p(1 − p)k−1 for
k > 1, and assume K and (Nt)t>0 are independent. Define the random variable TK by

TK = inf{t > 0 : Nt = K}.

◦ Find the moment generating function TK .

◦ What is the distribution of TK?

3 (a) Consider two boxes, labelled A and B. Initially, there are M marbles in box A
and none in box B. Each minute afterwards, one of the M marbles is chosen uniformly at
random and is moved to the opposite box. Let Kn denote the number of marbles in box
A at time n, so that K0 = M .

◦ Find the transition probabilities of the Markov chain (Kn)n≥0.

◦ What is the invariant distribution?

◦ Compute E(T ), where T = inf{n ≥ 1 : K0 = M} is the next time that all of the
balls are in box A.

(b) Let X1, X2, . . . be a sequence of independent random variables with

P(Xn = 1) = P(Xn = −1) =
1
2

for all n. Let S0 = 0 and Sn = X1 + . . . + Xn.

◦ Prove that the Markov chain (Sn)n≥0 is a recurrent. You may use Stirling’s formula:

n!√
2πnn+1/2e−n

→ 1

as n →∞.
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4 (a) Let (Xn)n≥0 be a martingale relative to a filtration (Fn)n≥0. Let (Yn)n≥0 be a
sequence of bounded random variables such that Yn is Fn-measurable for all n ≥ 0. Let
M0 = 0 and

Mn =
n−1∑
k=0

Yk(Xk+1 −Xk)

for n ≥ 1.

◦ Prove that (Mn)n≥0 is a martingale.

(b) ◦ State the L2 martingale convergence theorem.

(c) Let Y1, Y2, . . . be independent and identically distributed random variables with
E(Yi) = 0 and Var(Yi) = 1 for all i ≥ 1, and let

Sn =
1
2
Y1 +

1
4
Y2 + . . . +

1
2n

Yn

for n ≥ 1.

◦ Find E(Sn) and Var(Sn) for each n ≥ 1.

◦ Prove that there exists a random variable S such that Sn → S in L2.

5 (a) Let X1, X2, . . . be a sequence of independent random variables each uniformly
distributed uniformly [0, 1]. Let Mn = min{X1, . . . , Xn}.

◦ Prove that nMn converges in distribution to an exponential random variable with
parameter one.

(b) Let Y1, Y2, . . . be a sequence of independent and identically distributed random
variables with E(Yk) = µ and Var(Yk) = σ2 for all k ≥ 1, where µ and σ are finite
constants.

◦ State and prove the weak law of large numbers for Y1, Y2, . . ..

◦ State (without proof) the central limit theorem for Y1, Y2, . . ..

(c) Let B1, B2, . . . be sequence of events and let the event B be defined by

B =
⋂

N≥1

⋃
n≥N

Bn = {Bn infinitely often}.

◦ Prove the first Borel-Cantelli lemma: if
∑∞

k=1 P(Bk) < ∞ then P(B) = 0.
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