M. PHIL. IN STATISTICAL SCIENCE

Friday 1 June 2007 9.00 to 11.00

INTRODUCTION TO PROBABILITY

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. (a) Let N be a random variable taking values in {0, 1, 2, ...}.
Prove that

$$\mathbb{E}(N) = \sum_{n=0}^{\infty} \mathbb{P}(N > n).$$

(b) Let T_1, T_2, \ldots be independent Bernoulli random variables with

$$\mathbb{P}(T_n = 0) = \frac{1}{n} = 1 - \mathbb{P}(T_n = 1).$$

Let $N = \inf\{n \ge 1 : T_n = 1\}.$

- Prove that $\mathbb{E}(N) = e = 2.718...$
 - (c) Let U and V be independent N(0, 1) variables, and W = U + V.
- What is the distribution of W? (No proof is needed.)
- $\circ~$ Find the conditional expectations

$$\mathbb{E}(W|U > 0, V > 0)$$
 and $\mathbb{E}(W^2|U > 0, V > 0)$.

(d) Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) = \frac{2ye^{-xy}}{\pi(1+y^2)} \text{ for } x \ge 0, \ y \ge 0$$

 $\circ \text{ Compute } \mathbb{E}(X|Y=y).$

Introduction to Probability

2 (a) Let $(N_t)_{t>0}$ be a continuous-time Markov process on the state space $\{0, 1, 2, \ldots\}$ with generator $G = (g_{i,j})_{i,j\geq 0}$ given by $g_{i,i} = -\lambda$ and $g_{i,i+1} = \lambda$, for some constant $\lambda > 0$.

- Write down the forward Kolmogorov equations for the transition probabilities $p_{0,j}(t) = \mathbb{P}(N_t = j | N_0 = 0).$
- Assuming the uniqueness of the solution to these forward equations, verify that conditional on the event $\{N_0 = 0\}$, the random variable N_t has a Poisson distribution with a parameter to be determined.

(b) Now assume $N_0 = 0$, and let $T_k = \inf\{t \ge 0 : N_t = k\}$ for each $k = 1, 2, \dots$

- \circ Prove that T_1 is an exponential random variable.
- Find the moment generating function of T_k .

(c) Let K be a geometric random variable such that $\mathbb{P}(K = k) = p(1-p)^{k-1}$ for $k \ge 1$, and assume K and $(N_t)_{t \ge 0}$ are independent. Define the random variable T_K by

$$T_K = \inf\{t \ge 0 : N_t = K\}.$$

- Find the moment generating function T_K .
- What is the distribution of T_K ?

3 (a) Consider two boxes, labelled A and B. Initially, there are M marbles in box A and none in box B. Each minute afterwards, one of the M marbles is chosen uniformly at random and is moved to the opposite box. Let K_n denote the number of marbles in box A at time n, so that $K_0 = M$.

- Find the transition probabilities of the Markov chain $(K_n)_{n>0}$.
- What is the invariant distribution?
- Compute $\mathbb{E}(T)$, where $T = \inf\{n \ge 1 : K_0 = M\}$ is the next time that all of the balls are in box A.
 - (b) Let X_1, X_2, \ldots be a sequence of independent random variables with

$$\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = \frac{1}{2}$$

for all *n*. Let $S_0 = 0$ and $S_n = X_1 + ... + X_n$.

• Prove that the Markov chain $(S_n)_{n\geq 0}$ is a recurrent. You may use Stirling's formula:

$$\frac{n!}{\sqrt{2\pi}n^{n+1/2}e^{-n}} \to 1$$

as $n \to \infty$.

Introduction to Probability

TURN OVER

4 (a) Let $(X_n)_{n\geq 0}$ be a martingale relative to a filtration $(\mathcal{F}_n)_{n\geq 0}$. Let $(Y_n)_{n\geq 0}$ be a sequence of bounded random variables such that Y_n is \mathcal{F}_n -measurable for all $n\geq 0$. Let $M_0=0$ and

$$M_n = \sum_{k=0}^{n-1} Y_k (X_{k+1} - X_k)$$

for $n \geq 1$.

• Prove that $(M_n)_{n\geq 0}$ is a martingale.

(b) \circ State the L_2 martingale convergence theorem.

(c) Let Y_1, Y_2, \ldots be independent and identically distributed random variables with $\mathbb{E}(Y_i) = 0$ and $\operatorname{Var}(Y_i) = 1$ for all $i \ge 1$, and let

$$S_n = \frac{1}{2}Y_1 + \frac{1}{4}Y_2 + \ldots + \frac{1}{2^n}Y_n$$

for $n \geq 1$.

• Find $\mathbb{E}(S_n)$ and $\operatorname{Var}(S_n)$ for each $n \ge 1$.

• Prove that there exists a random variable S such that $S_n \to S$ in L_2 .

5 (a) Let X_1, X_2, \ldots be a sequence of independent random variables each uniformly distributed uniformly [0, 1]. Let $M_n = \min\{X_1, \ldots, X_n\}$.

 $\circ\,$ Prove that nM_n converges in distribution to an exponential random variable with parameter one.

(b) Let Y_1, Y_2, \ldots be a sequence of independent and identically distributed random variables with $\mathbb{E}(Y_k) = \mu$ and $\operatorname{Var}(Y_k) = \sigma^2$ for all $k \geq 1$, where μ and σ are finite constants.

- State and prove the weak law of large numbers for Y_1, Y_2, \ldots
- State (without proof) the central limit theorem for Y_1, Y_2, \ldots

(c) Let B_1, B_2, \ldots be sequence of events and let the event B be defined by

$$B = \bigcap_{N \ge 1} \bigcup_{n \ge N} B_n = \{B_n \text{ infinitely often}\}.$$

• Prove the first Borel-Cantelli lemma: if $\sum_{k=1}^{\infty} \mathbb{P}(B_k) < \infty$ then $\mathbb{P}(B) = 0$.

END OF PAPER

Introduction to Probability