M. Phil. IN STATISTICAL SCIENCE

INTRODUCTION TO PROBABILITY

Attempt THREE questions.
There are $\boldsymbol{F I V E}$ questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury Tag
Script paper

SPECIAL REQUIREMENTS
None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Let N be a random variable taking values in $\{0,1,2, \ldots\}$.

- Prove that

$$
\mathbb{E}(N)=\sum_{n=0}^{\infty} \mathbb{P}(N>n) .
$$

(b) Let T_{1}, T_{2}, \ldots be independent Bernoulli random variables with

$$
\mathbb{P}\left(T_{n}=0\right)=\frac{1}{n}=1-\mathbb{P}\left(T_{n}=1\right) .
$$

Let $N=\inf \left\{n \geq 1: T_{n}=1\right\}$.

- Prove that $\mathbb{E}(N)=e=2.718 \ldots$
(c) Let U and V be independent $N(0,1)$ variables, and $W=U+V$.
- What is the distribution of W ? (No proof is needed.)
- Find the conditional expectations

$$
\mathbb{E}(W \mid U>0, V>0) \text { and } \mathbb{E}\left(W^{2} \mid U>0, V>0\right) .
$$

(d) Let X and Y be random variables with joint density

$$
f_{X, Y}(x, y)=\frac{2 y e^{-x y}}{\pi\left(1+y^{2}\right)} \text { for } x \geqslant 0, y \geqslant 0
$$

- Compute $\mathbb{E}(X \mid Y=y)$.

2 (a) Let $\left(N_{t}\right)_{t>0}$ be a continuous-time Markov process on the state space $\{0,1,2, \ldots\}$ with generator $G=\left(g_{i, j}\right)_{i, j \geq 0}$ given by $g_{i, i}=-\lambda$ and $g_{i, i+1}=\lambda$, for some constant $\lambda>0$.

- Write down the forward Kolmogorov equations for the transition probabilities $p_{0, j}(t)=\mathbb{P}\left(N_{t}=j \mid N_{0}=0\right)$.
- Assuming the uniqueness of the solution to these forward equations, verify that conditional on the event $\left\{N_{0}=0\right\}$, the random variable N_{t} has a Poisson distribution with a parameter to be determined.
(b) Now assume $N_{0}=0$, and let $T_{k}=\inf \left\{t \geq 0: N_{t}=k\right\}$ for each $k=1,2, \ldots$.
- Prove that T_{1} is an exponential random variable.
- Find the moment generating function of T_{k}.
(c) Let K be a geometric random variable such that $\mathbb{P}(K=k)=p(1-p)^{k-1}$ for $k \geqslant 1$, and assume K and $\left(N_{t}\right)_{t \geqslant 0}$ are independent. Define the random variable T_{K} by

$$
T_{K}=\inf \left\{t \geqslant 0: N_{t}=K\right\} .
$$

- Find the moment generating function T_{K}.
- What is the distribution of T_{K} ?

3 (a) Consider two boxes, labelled A and B. Initially, there are M marbles in box A and none in box B . Each minute afterwards, one of the M marbles is chosen uniformly at random and is moved to the opposite box. Let K_{n} denote the number of marbles in box A at time n, so that $K_{0}=M$.

- Find the transition probabilities of the Markov chain $\left(K_{n}\right)_{n \geq 0}$.
- What is the invariant distribution?
- Compute $\mathbb{E}(T)$, where $T=\inf \left\{n \geq 1: K_{0}=M\right\}$ is the next time that all of the balls are in box A.
(b) Let X_{1}, X_{2}, \ldots be a sequence of independent random variables with

$$
\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=-1\right)=\frac{1}{2}
$$

for all n. Let $S_{0}=0$ and $S_{n}=X_{1}+\ldots+X_{n}$.

- Prove that the Markov chain $\left(S_{n}\right)_{n \geq 0}$ is a recurrent. You may use Stirling's formula:

$$
\frac{n!}{\sqrt{2 \pi} n^{n+1 / 2} e^{-n}} \rightarrow 1
$$

as $n \rightarrow \infty$.

4 (a) Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale relative to a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$. Let $\left(Y_{n}\right)_{n \geq 0}$ be a sequence of bounded random variables such that Y_{n} is \mathcal{F}_{n}-measurable for all $n \geq 0$. Let $M_{0}=0$ and

$$
M_{n}=\sum_{k=0}^{n-1} Y_{k}\left(X_{k+1}-X_{k}\right)
$$

for $n \geq 1$.

- Prove that $\left(M_{n}\right)_{n \geq 0}$ is a martingale.
(b) \circ State the L_{2} martingale convergence theorem.
(c) Let Y_{1}, Y_{2}, \ldots be independent and identically distributed random variables with $\mathbb{E}\left(Y_{i}\right)=0$ and $\operatorname{Var}\left(Y_{i}\right)=1$ for all $i \geq 1$, and let

$$
S_{n}=\frac{1}{2} Y_{1}+\frac{1}{4} Y_{2}+\ldots+\frac{1}{2^{n}} Y_{n}
$$

for $n \geq 1$.

- Find $\mathbb{E}\left(S_{n}\right)$ and $\operatorname{Var}\left(S_{n}\right)$ for each $n \geq 1$.
- Prove that there exists a random variable S such that $S_{n} \rightarrow S$ in L_{2}.

5 (a) Let X_{1}, X_{2}, \ldots be a sequence of independent random variables each uniformly distributed uniformly $[0,1]$. Let $M_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$.

- Prove that $n M_{n}$ converges in distribution to an exponential random variable with parameter one.
(b) Let Y_{1}, Y_{2}, \ldots be a sequence of independent and identically distributed random variables with $\mathbb{E}\left(Y_{k}\right)=\mu$ and $\operatorname{Var}\left(Y_{k}\right)=\sigma^{2}$ for all $k \geq 1$, where μ and σ are finite constants.
- State and prove the weak law of large numbers for Y_{1}, Y_{2}, \ldots..
- State (without proof) the central limit theorem for Y_{1}, Y_{2}, \ldots.
(c) Let B_{1}, B_{2}, \ldots be sequence of events and let the event B be defined by

$$
B=\bigcap_{N \geq 1} \bigcup_{n \geq N} B_{n}=\left\{B_{n} \text { infinitely often }\right\}
$$

- Prove the first Borel-Cantelli lemma: if $\sum_{k=1}^{\infty} \mathbb{P}\left(B_{k}\right)<\infty$ then $\mathbb{P}(B)=0$.

END OF PAPER

