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Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.
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1 Consider two discrete probability distributions p(x) and q(x). Defining the relative
entropy

D(p‖q) =
∑

x

p(x) log
(

p(x)
q(x)

)
,

prove the Gibbs inequality, that is, show that D(p‖q) > 0, with equality iff p(x) = q(x)
for all x.

Using this, show that for any positive functions f(x) and g(x), and for any finite
set A: ∑

x∈A

f(x) log
(

f(x)
g(x)

)
>

(∑
x∈A

f(x)

)
log
(∑

x∈A f(x)∑
x∈A g(x)

)
.

Assume that for any 0 6 p, q 6 1 then

p log
(

p

q

)
+ (1− p) log

(
1− p

1− q

)
> (2 log e)(q − p)2.

Show that for any probability distributions p and q:

D(p‖q) >
log e

2

(∑
x

|p(x)− q(x)|

)2

.
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2 Define the conditional entropy, and show that for random variables U and V the
joint entropy satisfies

h(U, V ) = h(V |U) + h(U).

Given random variables X1, . . . Xn, by induction or otherwise prove the chain rule

h(X1, . . . Xn) =
n∑

i=1

h(Xi|X1, . . . Xi−1).

Define the subset average over subsets of size k to be

h
(n)
k =

1(
n
k

) ∑
S:|S|=k

h(XS)
k

,

where if S = {s1, . . . sk}, then h(XS) = h(Xs1 , . . . Xsk
). Assume that for any i, the

h(Xi|XS) 6 h(Xi|XT ) when T ⊆ S, and i /∈ S.

By considering terms of the form,

h(X1, . . . Xn)− h(X1, . . . Xi−1, Xi+1, . . . Xn)

show that h
(n)
n 6 h

(n)
n−1.

Using the fact that h
(k)
k 6 h

(k)
k−1, show that h

(n)
k 6 h

(n)
k−1, for k = 2, . . . n.

3 Explain what is meant by the length, size and distance of a binary code. Define a
linear code by both the generator and parity check construction.

Show that the minimum distance of a linear code equals the size of the smallest
linearly dependent set of rows of the parity check matrix.

Show that the Hamming code of length 2l − 1 is perfect, for any l.

4 (a) Prove the Plotkin bound, that for a code with size r, length N and minimum
distance δ, with 2δ > N , the size satisfies

r 6
2δ

2δ −N
.

(b) State the MacWilliams identity, connecting the weight enumerator polynomials
of a code X and its dual X⊥.

Give the weight enumerator polynomial of a Hamming code of length 2l − 1.
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