APPLIED STATISTICS

Attempt FOUR questions.
There are $\boldsymbol{F I V E}$ questions in total.
The questions carry equal weight.

Cover sheet
Treasury Tag
Script paper

SPECIAL REQUIREMENTS
None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
$1 \quad$ Suppose $\mathbf{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where $\mathbf{Y}^{T}=\left(Y_{1}, \ldots, Y_{n}\right), \boldsymbol{\beta}^{T}=\left(\beta_{1}, \ldots, \beta_{p}\right), X$ is known $n \times p$ matrix with rank $p(<n)$, and $\boldsymbol{\epsilon}^{T}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, where $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent normal random variables with mean 0 and variance σ^{2}. Obtain the least squares estimator $\hat{\boldsymbol{\beta}}$ of $\boldsymbol{\beta}$, and derive the distribution of $\hat{\boldsymbol{\beta}}$.

Let $\hat{\boldsymbol{\epsilon}}=\mathbf{Y}-\hat{\mathbf{Y}}$ be the vector of residuals, where the vector of fitted values is $\hat{\mathbf{Y}}=H \mathbf{Y}$ for a matrix H that you should identify. Show that the residuals are uncorrelated with $\hat{\mathbf{Y}}$, and uncorrelated with $\hat{\boldsymbol{\beta}}$.
[You may assume that for a $n \times 1$ random vector \mathbf{Y} and $n \times n$ matrices A and B, $\left.\operatorname{cov}(A \mathbf{Y}, B \mathbf{Y})=A \operatorname{cov}(\mathbf{Y}) B^{T}\right]$.

For $i=1, \ldots, n$, let Y_{i} be the yield in litres of a chemical experiment and suppose

$$
Y_{i}=\alpha+\beta x_{i}+\gamma x_{i}^{2}+\epsilon_{i},
$$

where $x_{i}=\left(t_{i}-100\right) / 10$ and t_{i} is the temperature in degrees celsius used in the $i^{\text {th }}$ experiment. Suppose $n=30$ and that $x_{1}=\ldots=x_{10}=-1, x_{11}=\ldots=x_{20}=0$, $x_{21}=\ldots=x_{30}=1$. Obtain the covariance matrix of the least squares estimator $(\hat{\alpha}, \hat{\beta}, \hat{\gamma})^{T}$, and find an expression for the variance of $\hat{\alpha}+\hat{\beta} x+\hat{\gamma} x^{2}$. Find the values of x in $[-1,1]$ for which this variance is (i) maximised and (ii) minimised.

Given that the residual sum of squares is 2.43 , derive a 95% confidence interval for the expected yield when the temperature is $100^{\circ} \mathrm{C}$.
[You may assume that for $b \neq 0, a \neq b$

$$
\left[\begin{array}{ccc}
a & 0 & b \\
0 & b & 0 \\
b & 0 & b
\end{array}\right]^{-1}=\frac{1}{b(a-b)}\left[\begin{array}{ccc}
b & 0 & -b \\
0 & a-b & 0 \\
-b & 0 & a
\end{array}\right]
$$

2 Explain what is meant by a factor in analysis of variance. Suppose a response variable depends on two factors A and B. Define the interaction between A and B.

The edited S-Plus output below shows part of an analysis of the results of an experiment investigating how three factors affect the lustre value of plastic film. The three factors are the thickness of the film (with levels 0 and 1 corresponding to thin and thick), the temperature (0 and 1 corresponding to low and high) of the wash used in preparation of the film, and the length of the wash (1,2,3,4 corresponding to 20, 30, 40, 60 minutes). Assume that the S-Plus objects Thickness, Temperature and Wash have been correctly set up as these factors.

Give the algebraic form and assumptions for the model film1.lm. State the missing degrees of freedom in the output to the directive anova (film1.lm), and explain carefully why the model film2.lm is fitted next.

Find the fitted values under this model and explain how to find the standard errors of these fitted values. Summarise briefly, with appropriate sketch graph(s) as required, how lustre depends on the three factors.

```
> lustre
    [1] 3.3 4.1 4.9 5.0 3.4 4.4 4.0
```



```
[31] 30.2 29.6
> Thickness
    [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> Temperature
    [1] 0 0 0 0 0 0 0 0
> Wash
    [1] 1 2 3 4 1 2 3 4 1 2 3 4 1 1 2 3 4 4 1 2 3 3 4 1 1 2 3 4 4 1 2 2 3 4 4 1 2 3 4
> options(contrasts=c("contr.treatment","contr.poly"))
> film1.lm <- lm(lustre~Thickness*Temperature*Wash)
> anova(film1.lm)
Analysis of Variance Table
Response: lustre
Terms added sequentially (first to last)
                                    Df Sum of Sq Mean Sq F Value Pr(F)
                    Thickness * 391.300 391.300 191.082 0.0000000
                Temperature * 2806.878 2806.878 1370.671 0.0000000
                        Wash * 16.443 5.481 2.677 0.0821499
        Thickness:Temperature * 244.758 244.758 119.522 0.0000000
            Thickness:Wash * 3.568 1.189 0.581 0.6360491
            Temperature:Wash * 0.856 0.285 0.139 0.9349992
Thickness:Temperature:Wash * 
                            Residuals * 32.765 2.048
> film2.lm <- lm(lustre~Thickness*Temperature)
> summary(film2.lm,cor=F)
Call: lm(formula = lustre ~ Thickness * Temperature)
Residuals:
    Min 1Q Median 3Q Max
    -3.35-0.3687 0.0125 0.5813 3.475
Coefficients:
```



```
    UNIVERSITY OF
    CAMBRIDGE
    Thickness 1.4625 0.7140 2.0483 0.0500
    Temperature 13.2000 0.7140 18.4871 0.0000
Thickness:Temperature 11.0625 1.0098 10.9555 0.0000
Residual standard error: 1.428 on 28 degrees of freedom
Multiple R-Squared: 0.9837
F-statistic: 562.8 on 3 and 28 degrees of freedom, the p-value is 0
```

3 The random variable Y has a Poisson distribution with mean μ. Show that $\mathbb{P}(Y=y)$ can be written in the form

$$
\exp \left\{\frac{y \theta-b(\theta)}{\phi}+c(y, \phi)\right\}
$$

and identify $\theta, b(\theta)$ and ϕ. Verify that $b^{\prime}(\theta)=\mathbb{E}(Y)$ and $\phi b^{\prime \prime}(\theta)=\operatorname{var}(Y)$. Explain what is meant by a generalised linear model for the distribution of Y. What is the canonical link function for the Poisson distribution?

Car insurance claims in a particular year are classified according to the class and merit rating of the policyholder. The four merit ratings are

$$
\begin{array}{ll}
3 & \text { no claims for } 3 \text { or more years } \\
2 & \text { no claims for } 2 \text { years } \\
1 & \text { no claims for } 1 \text { year } \\
0 & \text { other. }
\end{array}
$$

There are five classes
1 non-business, no male driver under 25
2 non-business, secondary (but not principal) driver is male, under 25
3 business
4 non-business, principal driver is male, under 25 and unmarried
5 non-business, principal driver is male, under 25 and married
Let $Y_{i j}$ and $n_{i j}$ be the number of claims and the number of car years insured in class i with merit rating j, for $i=1, \ldots, 5, j=0,1,2,3$. Consider the rate $\lambda_{i j}$ of claims per car year insured in class i with merit rating j.

Write down the algebraic form, together with the assumptions, of the model carins.glm in the (slightly edited) S-Plus output below where claims and insured are the number of claims and the claim years insured respectively. Derive equations satisfied by the maximum likelihood estimates of the parameters in the model. Interpret carefully the rest of the S-Plus output.

4 Let Y_{1}, \ldots, Y_{m} be independent random variables with $Y_{i} \sim \operatorname{Bin}\left(n_{i}, p_{i}\right), i=$ $1, \ldots, m$, and consider the model $\omega_{1}: \log \left(\frac{p_{i}}{1-p_{i}}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\beta}, i=1, \ldots, m$, where $\boldsymbol{\beta}=$ $\left(\beta_{1}, \ldots, \beta_{p}\right)^{T}$ and \mathbf{x}_{i} is a vector of covariate values for Y_{i}. Derive an expression for the deviance D_{1} for this model. Find an expression for the deviance D_{0} for the model $\omega_{0}: \log \left(\frac{p_{i}}{1-p_{i}}\right)=\widetilde{\mathbf{x}}_{i}^{T} \widetilde{\boldsymbol{\beta}}, i=1, \ldots, m$, where $\widetilde{\boldsymbol{\beta}}=\left(\beta_{1}, \ldots, \beta_{k}\right)^{T}$ for some fixed $k, 1 \leqslant k<p$, and where $\tilde{\mathbf{x}}_{i}$ is the vector of corresponding covariate values. Explain how D_{0} and D_{1} may be used to test $H_{0}: \beta_{k+1}=\ldots=\beta_{p}=0$.

Anthers of a particular plant species are prepared under two different storage conditions (1,2 are control, treatment respectively) and with different centrifuging forces $(40 g, 150 g, 350 g)$, and the number of embryogenic anthers is observed. Suppose $n_{i j}$ anthers are prepared with storage condition i and centrifuging force $x_{j}, i=1,2, x_{1}=40, x_{2}=150$, $x_{3}=350$, where $n_{i j} \geqslant 70$ for all i, j. Let $y_{i j}$ and $p_{i j}$ be the number of embryogenic anthers and probability of the anthers being embryogenic with storage condition i in centrifuging force x_{j}, for $i=1,2, j=1,2,3$.

The following models are fitted, resulting in the residual deviances as shown below. In each case $i=1,2$ and $j=1,2,3$.

$$
\begin{array}{llrl}
\omega_{0}: & \log \left(\frac{p_{i j}}{1-p_{i j}}\right) & =\alpha, & \\
\text { residual deviance } D_{0}=10.452 \\
\omega_{1}: & \log \left(\frac{p_{i j}}{1-p_{i j}}\right) & =\alpha_{i}, & \\
\omega_{2}: & \log \left(\frac{p_{i j}}{1-p_{i j}}\right)=\alpha+\beta \log x_{j}, & & \text { residual deviance } D_{1}=5.173 \\
\omega_{3}: & \log \left(\frac{p_{i j}}{1-p_{i j}}\right)=\alpha_{i}+\beta \log x_{j}, & & \text { residual deviance } D_{2}=8.092 \\
& =1.619
\end{array}
$$

Interpret these four models. Carry out appropriate statistical tests to determine which is your preferred model.
[If $\chi_{\nu}^{2}(\alpha)$ is defined by $\mathbb{P}\left(Y>\chi_{\nu}^{2}(\alpha)\right)=\alpha$ where $Y \sim \chi_{\nu}^{2}$, then $\chi_{1}^{2}(0.05)=3.84$, $\left.\chi_{2}^{2}(0.05)=5.99, \chi_{3}^{2}(0.05)=7.82, \chi_{4}^{2}(0.05)=9.49, \chi_{5}^{2}(0.05)=11.07\right]$

5 Describe briefly the basic concept behind the E-M algorithm, explaining what the E and M steps correspond to in the algorithm and appropriately defining all notations used.

As part of a training session, a swimming instructor matches into 8 pairs a strong swimmer and a not so strong swimmer. The instructor asks the 8 swimming pairs to each line up behind one of the eight start platforms of a twenty five-metre pool. The instructor then tells the swimmers that there will be a fifty-metre relay race between the pairs. The order that the members of the pairs will race in is left up to each pair to decide. The instructor selects eight further members of his swimming class to record the swimming times for each member of each pair. The race is then started. Unfortunately, five of the eight members asked to record the swimming times of the swimmers only record the total times for their five designated pairs.

The swimming instructor comes to you with the data in the following form

$$
X=\left(S_{11}, S_{12}, S_{21}, S_{22}, S_{31}, S_{32}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}\right)
$$

where $S_{i 1}, S_{i 2}$ correspond respectively to the swimming times of the strong swimmer and the not so strong swimmer in the i th pair, for $1 \leqslant i \leqslant 3$, and T_{j} corresponds to the total swim time for the j th pair, for $4 \leqslant j \leqslant 8$.

The instructor believes that all swimming times are independent, that those for the strong swimmers follow an exponential distribution with mean $1 / \lambda_{1}$, and that those for the weaker swimmers follow an exponential distribution with mean $1 / \lambda_{2}$, where $\lambda_{1}>\lambda_{2}$. The instructor asks you to use X to estimate $\left(\lambda_{1}, \lambda_{2}\right)$.
(a) Show that for $j=4, \ldots 8, T_{j}$ has probability density function

$$
g(t)=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}-\lambda_{2}}\left(e^{-\lambda_{2} t}-e^{-\lambda_{1} t}\right) \quad \text { for } \quad t>0
$$

(b) Write down $\log L\left(\lambda_{1}, \lambda_{2} \mid X\right)$, the log-likelihood corresponding to the observed data X
(c) Apply the E-M algorithm to this estimation problem, providing explicit expressions for the parameter updates obtained in the M-step of the algorithm to compute the maximum likelihood estimates of λ_{1}, λ_{2}.
[Note that

$$
\int_{0}^{t} s e^{-\lambda s} d s=\frac{1}{\lambda^{2}}-\left(\frac{t}{\lambda}+\frac{1}{\lambda^{2}}\right) e^{-\lambda t}
$$

for any $t>0$ and any λ.]

