M. Phil. IN STATISTICAL SCIENCE

APPLIED STATISTICS

Attempt THREE questions.
There are four questions in total.
The questions carry equal weight.

This is an 'Open Book' examination, involving the use of the Statistical Laboratory's network of workstations. Candidates will receive this paper at 9.00am on Monday 7 June, and must hand in their scripts to the Chairman of Examiners by 1.00 pm on Thursday 10 June.

The data sets will be emailed to candidates on Monday 7 June.
(The Statistical Laboratory Computer Officer and an Examiner will normally be available for consultation if required between 9.00am and 4.30 pm on these four days.)

Each candidate should submit his/her script with a signed statement that the work has been carried out without any collaboration with others.

The scripts may be handwritten. Candidates are requested to submit at most 25 pages in total. They are advised that the total work set should take between 4 and 6 hours.

1 The Independent, on February 20, 2003, gave the following data on Police Performance Monitoring, for the 43 police forces of England and Wales. The 6 columns of the table are, respectively

Burg	$=$ number of Burglaries for every 1000 households
Vehc	$=$ Vehicle crimes for every 1000 residents
Robb	$=$ Robberies for every 1000 residents
Offdet	$=$ percentage of offences detected
HiDis	$=$ percentage of residents perceiving disorder as high
GoodJob	$=$ percentage of residents thinking police do a good job

(i) Summarise the data with appropriate graphs, tables and a paragraph of text.
(ii) How does HiDis depend on the first 4 variables Burg,..., Offdet? How does GoodJob depend on these first 4 variables? Illustrate the use of the stepAIC() function in your solution.
(iii) What is the sample correlation matrix for the 6 variables? What is the partial correlation of HiDis and GoodJob, conditional on the remaining 4 variables?

	Burg	Vehc	Robb	OffDet	HiDis	GoodJob
AvonandSomerset	25.1	27.0	3.2	14	19	46
Bedfordshire	15.7	22.5	1.7	21	26	47
Cambridgeshire	15.4	17.5	0.9	16	16	43
Cheshire	14.5	13.7	0.5	24	17	46
CityofLondon	13.0	140.0	7.2	32	32	49
Cleveland	35.8	25.6	2.3	20	18	38
Cumbria	10.1	9.1	0.3	27	14	40
Derbyshire	16.4	16.7	1.1	22	18	50
Devon\&Cornwall	10.3	11.1	0.3	25	13	51
Dorset	11.0	14.0	0.5	23	14	51
Durham	15.7	12.6	0.5	29	28	48
Dyfed-Powys	3.6	4.2	0.1	51	12	53
Essex	8.2	12.8	0.6	20	16	47
Gloucestershire	14.2	14.4	0.9	26	14	46
Gr`Manchester	36.2	28.9	4.3	16	27	44
Gwent	11.3	12.6	0.4	46	15	49
Hampshire	9.6	12.2	0.5	25	17	51
Hertfordshire	11.4	13.7	0.6	21	11	49
Humberside	29.8	24.2	1.3	17	18	43
Kent	11.4	12.9	0.6	24	20	45
Lancashire	20.4	14.7	1.1	25	17	46
Leicestershire	17.3	17.4	1.2	23	10	51
Lincolnshire	14.3	10.7	0.4	21	12	45
Merseyside	24.8	21.4	2.2	21	27	47
Met.Police	23.2	23.6	7.3	12	32	49
Norfolk	10.6	12.2	0.5	23	14	45
Northamp's	15.0	18.1	1.4	24	25	45
Northumbria	18.5	14.4	1.0	29	24	56
NorthWales	8.9	11.7	0.3	24	22	50
NorthYorkshire	15.1	10.8	0.4	22	15	47
Notts	33.1	27.7	2.6	17	18	42
SouthWales	13.6	20.8	0.5	28	22	47
SouthYorkshire	29.5	22.1	1.5	23	27	45
Staffordshire	18.7	16.9	0.9	19	23	46
Suffolk	8.6	10.2	0.4	24	14	50
Surrey	8.2	8.7	0.5	19	12	53
Sussex	11.4	14.0	0.8	79	23	46
ThamesValley	15.5	19.6	1.4	20	17	45
Warwickshire	14.4	15.7	0.7	20	14	52
WestMercia	12.9	11.4	0.6	23	16	50
WestMidlands	29.5	24.3	5.1	24	18	46
WestYorkshire	39.1	30.8	2.7	18	20	46
Wiltshire	9.5	8.6	0.5	26	14	50

2 In an experiment to assess the toxicity of pollutants in aquatic systems, females of species C. dubia were observed following exposure to a particular pollutant. Ten individuals were randomly allocated to each of five concentrations $(\mu \mathrm{g} / l)$ of the pollutant, and were observed over three subsequent breeding seasons. The number of young were recorded.

The data are given in the table below. Assess the effect the pollutant has on the numbers of young, both season to season and in total.

3 You see in the Table below an extract from the Metropolitan Police Statistics for offences in the category

> "Violence against the Person"
for each of the 33 Metropolitan boroughs, for September 2003 and October 2003.
The Metropolitan Police Service, Offences by Borough
www.met.police.uk/crimestatistics/stat

Violence against the person

September 2003								
	Murder	GBH	ABH	ComAss	OffW	Har	OViol	VAP.Tot
Westminster	0	12	159	316	82	117	47	733
Camden	1	21	147	196	33	88	29	515
Islington	1	10	124	227	40	116	40	558
Hackney	0	27	132	232	38	89	53	571
Tower_Ham	1	12	70	298	37	136	34	588
Greenwich	2	10	122	283	19	115	34	585
Lewisham	3	16	85	246	24	69	54	497
Southwark	2	26	165	322	32	146	67	760
Lambeth	2	31	190	325	55	155	51	809
Wandsworth	0	19	90	236	23	90	17	475
Hamm\&Fulham	0	8	91	141	20	78	20	358
Kens\&Chelsea	0	6	88	115	10	49	8	276
Walt_Forest	0	15	90	259	25	115	23	527
Redbridge	0	8	37	221	15	76	32	389
Havering	0	5	39	207	11	44	14	320
Bark\&Dagenham	0	10	50	194	14	44	14	326
Newham	1	13	101	383	34	128	42	702
Bexley	0	2	64	175	6	72	31	350
Bromley	0	7	67	217	12	82	30	415
Croydon	0	21	146	333	21	133	40	694
Sutton	0	5	24	162	4	49	4	248
Merton	0	6	76	126	17	73	14	312
Kingston_u_T	1	5	41	180	3	36	6	272
Richmond_u_T	0	1	32	112	9	41	11	206
Hounslow	0	11	139	264	20	124	59	617
Hillingdon	0	10	92	178	16	64	25	385
Ealing	0	16	142	317	13	94	48	630
Brent	2	16	77	372	18	86	52	623
Harrow	1	7	68	126	9	31	17	259
Barnet	0	9	93	216	20	85	33	456
Haringey	1	14	162	133	31	52	39	432
Enfield	0	15	91	180	18	46	35	385
H/R_Airport	0	0	5	14	5	5	1	30
Total	18	394	3099	7306	734	2728	1024	15303

6

October 2003							
	Murder	GBH	ABH	ComAss	OffW	Har	OViol

Key: Murder = Murder, GBH = Grievous Bodily Harm, ABH = Aggravated Bodily Harm, ComAss = Common Assault, Har = Harassment, OViol= Other Violence, VAP.Tot = Violence against the person, total.
(i) Summarise the data with appropriate graphs, and a paragraph of text. This summary should include informal comparisons of the crime statistics for September with those of October.
(ii) Let ySept be the "VAP.Tot" figures for September 2003, and let yOct be the corresponding figures for October 2003. Use appropriate non-parametric methods to see whether
(a) ySept are different from yOct;
(b) ySept are related to yOct.
(iii) Now let $\left(y_{1 j}\right)$ be ySept, and let $\left(y_{2 j}\right)$ be yOct.

Let $\left(C A_{1 j}\right)$ be the number of Common Assaults for September, and let $\left(C A_{2 j}\right)$ be the corresponding number for October. (Here $j=1, \ldots, 33$, corresponding to the 33 boroughs)

Let $\mathbb{E}\left(C A_{i j} / y_{i j}\right)=\pi_{i j}, \quad$ for $i=1,2$ and $j=1, \ldots, 33$.
(a) Test the hypothesis $H_{0}: \pi_{1 j}=\pi_{1}$ for all j.
(b) Fit the model $g\left(\pi_{i j}\right)=\mu+\alpha_{i}+\beta_{j}$, for $i=1,2$ and $j=1, \ldots, 33$.
where $g()$ is the usual logit link. Can you identify one particular Borough whose removal makes this model fit quite well?

How would you interpret the model to a layman?

4 Consider a data-set from a multi-centre, placebo-controlled randomised trial on 1000 patients with liver cirrhosis and no previous history of bleeding. Patients were randomised to receive either propranolol or a placebo. Eligible patients included patients in whom cirrhosis was histologically confirmed and where endoscopy had shown oesophageal varices of either Grade 2 or 3 . The aim of the study was to evaluate the effect of propranolol versus placebo on the risk of a first bleed and on survival (either from having a first bleed or from never having one). Additional information on gender and the base-line Child-Pugh classification score (which is an indication of a patient's prognosis, and is graded A, B or C corresponding to having a good, an intermediate or a bad prognosis respectively) was recorded.

A subset of data is shown below (with the time variable suitable rounded to two decimal places). The codes for the headers are also represented.

subject	time	trt	sex	CPclass	grade	state
1	0	0	1	3	0	1
1	1	0	1	3	0	1
1	2	0	1	3	0	1
1	2.77	0	1	3	0	3
2	0	0	0	2	0	1
2	1	0	0	2	0	1
2	2	0	0	2	0	1
2	3	0	0	2	0	2
2	4	0	0	2	0	2
2	5	0	0	2	0	2
.						
.						
.	0	0	0	3	0	1
999	1	0	0	3	0	2
999	1.04	0	0	3	0	3
999	0	0	1	3	1	1
1000	0.49	0	1	3	1	3
1000						

subject $=$ Patient identification number
time $=$ The time in the study (in years)
state $=$ The state the patient is in at a particular time point (1 corresponds to the no bleeding state; 2 corresponds to the bleeding state and 3 to the death state.)
trt $=$ The treatment received (0 corresponds to placebo; 1 to propranolol)
sex $=$ The gender of the patient $(0=$ female; $1=$ male $)$
CPclass $=$ The Child-Pugh classification $(1=\mathrm{A} ; 2=\mathrm{B} ; 3=\mathrm{C})$
grade $=$ Grade of varices $(0=$ Grade $2 ; 1=$ Grade 3$)$
a) Construct a descriptive table of the patients' characteristics by each treatment group. Should you perform formal statistical tests to determine whether there are any differences in the characteristics between the two treatment groups? Give a reason for your answer.
b) Assuming a progressive disease model, draw the appropriate multi-state (transition) diagram that corresponds to the study's aim. What are the transition intensities and
sojourn times of the multi-state model (assuming no covariates) that follow your transition diagram? Interpret them. What is the probability that a patient who is observed with a first bleed at a particular visit will be alive a year on from that visit?
c) If you ignore the effects of the other covariates, what are your estimates of the effects of treatment (propranolol versus placebo) on the transitions? (The model that you have fitted must be described and the R-code presented.)
d) Now investigate the simultaneous effects of the covariates on the transitions by fitting an appropriate multi-state model to the data, which takes into account the following assumptions:
(i) Propranolol will have no effect on the "no bleed to death" transition intensity.
(ii) Gender has no influence on the transition intensity from no bleed to first bleed, but has a common (i.e. the same) effect on the transition intensities that leads to death.
(iii) There is a common effect of having a Child-Pugh classification of B (compared to A) on the transition intensities that lead to death. There is also a common effect (but, in general, different from the above) of having a Child-Pugh classification of C (relative to A) on the transition intensities that lead to death.
(iv) There is a common effect of the grade of the oesophageal varices on the transitions from no bleed to first bleed and first bleed to death. However, there is no effect of the grade of the oesophageal varices on the transition intensity from no bleed to death.

Interpret carefully the results obtained. The model that you have fitted must be described and the R-code presented

