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1 Much of biomedical science is concerned with finding true relationships between ‘expos-
ures’ (say genes) and ‘outcomes’ (say diseases). Ioannidis (2005) published a much-cited paper
Why most published research findings are false, in which he supposed that relationships being
studied were either ‘true’ (denoted T ) or ‘false’ (denoted F ): a false relationship corresponds
to a null hypothesis H0, while a true relationship corresponds to an alternative hypothesis H1 .
He assumed, in any particular field, a ratio R between the proportion of true relationships and
the proportion of false relationships. Furthermore, he assumed that each study was reported as
being either ‘positive’ (denoted P ), or ‘negative’ (denoted N), and that all studies were designed
with Type 1 error α (the probability that a false relationship is detected in the study - a ‘false
positive result’) and Type II error β (the probability that a relationship that truly does exist is
not detected in the study - a ‘false negative result’).

(a) What is the probability that a relationship is false, given that a study reported it as
positive?

(b) Show that R has to be at least α/(1 − β), in order for a reported positive result to be
more likely true than false.

Suppose a study is designed to have a test statistic Y with a N(0, 1) distribution under the
null hypothesis that there is no relationship, and the alternative hypothesis is that Y has a
N(2.49, 1) [NB Φ(1.65) ≈ 0.95,Φ(−0.84) ≈ 0.2, where Φ is the standard normal cumulative
distribution function].

(c) If a positive result is declared if Y > 1.65 , show that α = 0.05, β = 0.20 .

(d) If we observe y , show that the Bayes factor for the alternative hypothesis against the null
hypotheses is e2.49(y−1.245).

(e) In a succeeding paper, Goodman and Greenland criticised Ioannidis’ analysis, saying that
it is not sensible to summarise results by just whether they are ‘significant’ or not. In the light
of the preceding analysis, do you think this is a reasonable criticism?

Suppose that n independent studies, each designed with Type I error α and Type II error β,
are performed to test the same relationship.

(f) What is the chance that, if the relationship does not exist, at least one will show a positive
result?

(g) If all we know is that there is at least one positive result among the n studies, what are
the odds that this is a true finding?

(h) What happens to these odds as n increases? Why does Ioannidis claim that ‘The hotter
a scientific field (with more scientific teams involved), the less likely the research findings are to
be true’?

(i) Goodman and Greenland also say it is unrealistic to assume that all we know is that
there is at least one positive result among n studies. If we read a published account that claims
a positive relationship based on the full results of many studies carried out in a field, should
that increase or decrease our confidence in the positive finding, relative to what we would feel
after reading a single study?
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2 Suppose yi is the numbers of cases of MRSA (a bacterial infection) in a single year, in
the ith of n hospitals, each drawn respectively from a Poisson distribution with mean θi. The
θi’s are assumed drawn from an exponential distribution p(θi|ψ) = ψe−ψθi ; θi > 0 .

(a) Draw a directed graph for this model.

(b) When using Gibbs sampling for this model, prove that the full conditional distribution
for θi depends only on yi and ψ, and derive its form. [The Gamma distribution has the form
p(x) = baxa−1e−bx/Γ(a).]

(c) What does yi contribute to the likelihood for ψ? Show that contribution of yi to the
likelihood for φ = 1/(1 + ψ) is (1− φ)φyi .

(d) What is the conjugate prior for φ?

Suppose the logarithm of the hyper-parameter ψ is given an improper uniform prior

p(logψ) ∝ 1 .

(e) What is the induced prior for φ?

(f) Find the posterior distribution for φ using this prior.

(g) Show that the posterior expectation of θi is a weighted average of yi and y.

(h) In real hospitals would you expect the assumptions about the prior distribution for the
θi’s to be correct?

(i) What might be a more reasonable model?
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3 The testosterone/epitestosterone (T/E) ratio is used as a biomarker for detecting athletes’
abuse of testosterone, and a Bayesian model has been suggested for monitoring repeated
measures of the logarithm of an athlete’s T/E ratio.

An athlete i is assumed, if he/she is not taking additional testosterone, to have log(T/E)
measurements drawn independently from a normal distribution with mean θi and standard
deviation σi. We assumed that the population of θi’s are independently drawn from a N(µ, τ2)
distribution.

Suppose for the moment that we know values for µ and τ . We select an athlete i for whom we
have no data, and assume we know σi.

(a) What is the predictive distribution for Yi1, the first observation to be taken on athlete i?

(b) We want to set an upper limit ui1, so that the predictive probability that an observation
lies above that limit, if the athlete is not abusing testosterone, is 1/1000. Write down an explicit
expression for ui1 in terms of µ, τ, σi and Φ, where Φ is the standard normal distribution function.

Suppose we now take a measurement yi1 on athlete i.

(c) What is the posterior distribution for θi?

(d) Denoting the posterior mean and variance of θi by mi1 and vi1 respectively, what is the
predictive distribution for Yi2, a future second measurement?

(e) What monitoring limit ui2 would you set for Yi2 , such that there was a 1/1000 predicted
probability that an ‘innocent’ athlete would exceed that limit?

(f) Explain in words how the monitoring limits will change as more data becomes available
on athlete i.

In fact the parameters µ, τ and σ’s are unknown, but there is a historical database available of
repeated measurements on athletes who were not abusing testosterone, denoted yj1, ..., yjnj , for
j in 1 to J . The following code has been suggested for analysing the database.

for (j in 1:J) {

for (k in 1:n [j]) {

Y [j,k] ~ dnorm (theta [j], invsigma2 [j])
}

theta [j] ~ dnorm (mu, invtau2)
log (invsigma2 [j]) <- - log.sigma2 [j]
log.sigma2 [j] ~ dnorm (phi, invpsi2) # (1)

}

mu ~ dunif (-100, 100)
invtau2 <- 1 / (tau*tau) ; tau ~ dunif (0, 100) # (2)
phi ~ dunif (-100, 100)
invpsi2 <- 1 / (psi*psi) ; psi ~ dunif (0, 100) # (3)

(g) Explain why this code may be reasonable, with special reference to the numbered lines
of code.

Question continued/. . .
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(h) Suppose you now have three measurements available on a new athlete, and you want to
check whether the third observation is ‘extreme’ relative to the first two (i.e. outside a 99.9%
prediction interval). How would you adapt the code to carry out this analysis?

The assumption that the θ’s are normally distributed is questionable, and the following
modification to the prior distribution has been suggested:

theta [i] ~ dnorm (mu , invtau2 [i])
invtau2 [i] <- lambda [i] / (4*tau*tau)
lambda [i] ~ dchisqr (4)

(i) What prior distribution will this imply for each (θi − µ)/τ?

(j) Why might this be an appropriate model?

(k) How might you assess if it was a more appropriate model for the historical data?
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4 The graph below shows the circumferences in mm of 5 orange trees, each measured on
day x .
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An investigator uses the following WinBUGS code to fit an independent ‘logistic growth
curve’ to each tree (Model A).

for (i in 1:5) {

for (j in 1:7) {

Y [i,j] ~ dnorm (m [i,j], invsigma2)
m [i,j] <- phi [i,1] / ( 1 + phi [i,2]

* exp ( phi [i,3]
* ( x [j] - mean (x []) ) / sd (x []) ) )

}

log ( phi [i,1] ) <- theta [i,1]
log ( phi [i,2] ) <- - theta [i,2]

phi [i,3] <- - theta [i,3]

for (p in 1:3) { # *

theta [i,p] ~ dunif (-100,100) # *
} # *

} # *

invsigma2 ~ dgamma (1.0E-3, 1.0E-3)
sigma <- 1 / sqrt (invsigma2)
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(a) Why is x transformed?

(b) Interpret the parameters phi[i,1], and 1/ (1 + phi[i,2]). Why do you think this is
called a logistic curve?

(c) Do you think the prior distributions are reasonable?

The investigator decides to replace the starred lines of code in Model A by the following (Model
B).

.....
theta [i,1:3] ~ dmnorm (mu [], Omega [,])
}
for (p in 1:3) { mu[p] ~ dunif (-100,100) }
Omega [1:3, 1:3] ~ dwish (R [,], 3)
R [1,1] <- 1; R [1,2] <- 0; R [1,3] <- 0;
R [2,1] <- 0; R [2,2] <- 1; R [2,3] <- 0;
R [3,1] <- 0; R [3,2] <- 0; R [3,3] <- 1

Some of the output is shown below:

theta [,1] theta [,2] theta [,3]
mean sd mean sd mean sd

theta [1,] 5.063 0.090 0.753 0.357 1.443 0.281
theta [2,] 5.392 0.059 0.679 0.252 1.601 0.223
theta [3,] 5.057 0.103 0.557 0.354 1.412 0.280
theta [4,] 5.427 0.053 0.673 0.234 1.715 0.227
theta [5,] 5.302 0.098 0.291 0.289 1.498 0.241

(d) Comment on the appropriateness of the new code

(e) Why might it be reasonable to assume that all trees have the same values for theta[i,2]
and theta[i,3]?

(f) How might you change the code to reflect this assumption (keeping theta[i,1] as a
random effect) ? Call this Model C.

After 50,000 iterations the following output for DICs were obtained for all three fitted models:

Dbar = post.mean of -2logL;
Dbar pD DIC

Model A 248.1 12.0 260.1
Model B 244.2 13.9 258.1
Model C 247.3 8.2 255.6

(g) Comment on the how the values of Dbar (the mean deviance), pD (the effective number
of parameters) and DIC depend on the models.

(h) What might be considered unsatisfactory about Dbar and pD for Model A? Why might
this have happened?

(i) In the final model, say very briefly how you would go about testing the normality
assumption for the residual error. Would you also be testing the adequacy of the normal
assumption for the random effects?

END OF PAPER
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