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1 Define the term σ-field. Let (Fr : r ∈ R) be a collection of σ-fields of subsets of Ω.
Show that ∩rFr is a σ-field, but that ∪rFr need not be. Show that there exists a smallest
σ-field of Ω containing every Fr.

Let X1, X2, . . . be independent random variables on (Ω,F , P ). Define the tail σ-
field of the Xi, and show that every event in the tail σ-field has probability either 0 or
1.

Let Sn = X1 +X2 + . . .+Xn. Show that the events{
lim inf
n→∞

Sn/
√
n 6 −x

}
,

{
lim sup
n→∞

Sn/
√
n > x

}
lie in the tail σ-field for every x ∈ R.

Suppose further that the Xi are symmetric (in that Xi and −Xi have the same
distribution), and that there exists c ∈ R such that P (|Xi| 6 c) = 1 for all i. Show that

P

(
|Sn| 6

1
2
c infinitely often

)
= 1 .

2 (a) State and prove the two Borel–Cantelli lemmas.

(b) Show that the N(0, 1) distribution function Φ and density function φ satisfy

1− Φ(x) ∼ φ(x)
x

as x→∞ .

(c) Let X1, X2, . . . be independent N(0, 1) random variables on (Ω,F , P ). Show
that

P

(
lim sup
n→∞

X2
n

log n
= 2
)

= 1 .
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3 Let (Ω,F , P ) be a probability space.

(a) Define the space L2 = L2(Ω,F , P ) and show that it is complete in that, for any
Cauchy sequence Xn ∈ L2 there exists X ∈ L2 such that Xn → X in L2.

(b) Define the terms ‘filtration’ and ‘martingale’. State the almost-sure martingale
convergence theorem.

(c) Let (Xn : n > 0) be a martingale such that E(X2
n) 6 M < ∞ for all n. Show

that
E
(

(Xn −Xm)2
)

= E
(
X2
n

)
− E

(
X2
m

)
for m 6 n, and deduce that Xn converges in L2.

4 (a) Let X1, X2, . . . be independent integrable random variables with E(Xi) = 0 for
all i. Show that Sn = X1 +X2 + . . .+Xn defines a martingale with respect to the filtration
given by

Fn = σ (X1, X2, . . . , Xn) .

(b) Suppose further that the Xi are identically distributed and take values in
{. . . ,−2,−1, 0, 1} with P (X1 = 1) > 0. Let M(t) = E(etX1) and suppose τ > 0. Show
that M(τ) ∈ [1,∞), and that

Zn = eτSn/M(τ)n

is a martingale.

(c) [Continuation] Let b ∈ {1, 2, . . .} and T = inf{n : Sn = b}. By considering the
non-negative martingale b− Sn∧T or otherwise, show that P (T <∞) = 1.

(d) [Continuation] Show that the martingale Zn∧T is uniformly integrable, and
deduce that

E
(
M(τ)−T

)
= e−τb .

(e) Calculate E(e−αT ) for α > 0, in the special case when

P (X1 = 1) = P (X1 = −1) =
1
2
.

[Any general result which you use should be stated clearly.]
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5 (a) Define the term ‘uniformly integrable’. Let Z be integrable and Fn a filtration.
Show that the sequence Xn = E(Z|Fn), n > 1, is uniformly integrable.

(b) For x ∈ [0, 1), define for non-negative integers k, n,

bn(x) = k2−n if k2−n 6 x < (k + 1)2−n .

Let f : [0, 1] → R be integrable, and let U be uniformly distributed on [0, 1]. Show that
Xn = E(f(U)|Fn) defines a uniformly integrable martingale with respect to the filtration
Fn = σ (bn(U)). Let fn be the step function on [0, 1] given by

fn(x) = 2n
∫ bn(x)+2−n

bn(x)

f(u)du .

Show that fn(x)→ f(x) for almost every x, and∫ 1

0

|fn(u)− f(u)|du→ 0 as n→∞ .

6 Define a standard Brownian motion B = (Bt : t > 0). Give a careful statement of
the Strong Markov Property. Set

Mt = sup {Bs : 0 6 s 6 t} .

Prove that
P (Mt > m, Bt 6 x) = P (Bt > 2m− x)

for t > 0, m > 0, and x 6 m.

Deduce that Mt has the same law as |Bt|.

For x > 0, let Tx = inf{t : Bt > x}. Show that Tx has the same law as (x/B1)2,
and calculate the density function of Tx.

END OF PAPER
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