

M. PHIL. IN STATISTICAL SCIENCE

Friday 30 May 2008 9.00 to 12.00

ADVANCED PROBABILITY

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 Define the term σ -field. Let $(\mathcal{F}_r : r \in R)$ be a collection of σ -fields of subsets of Ω . Show that $\cap_r \mathcal{F}_r$ is a σ -field, but that $\cup_r \mathcal{F}_r$ need not be. Show that there exists a smallest σ -field of Ω containing every \mathcal{F}_r .

Let X_1, X_2, \ldots be independent random variables on (Ω, \mathcal{F}, P) . Define the tail σ -field of the X_i , and show that every event in the tail σ -field has probability either 0 or 1.

Let $S_n = X_1 + X_2 + \ldots + X_n$. Show that the events

$$\left\{\liminf_{n\to\infty} S_n/\sqrt{n} \leqslant -x\right\}, \quad \left\{\limsup_{n\to\infty} S_n/\sqrt{n} \geqslant x\right\}$$

lie in the tail σ -field for every $x \in \mathbb{R}$.

Suppose further that the X_i are symmetric (in that X_i and $-X_i$ have the same distribution), and that there exists $c \in \mathbb{R}$ such that $P(|X_i| \leq c) = 1$ for all *i*. Show that

$$P\left(|S_n| \leqslant \frac{1}{2}c \quad \text{infinitely often}\right) = 1.$$

2 (a) State and prove the two Borel–Cantelli lemmas.

(b) Show that the N(0,1) distribution function Φ and density function ϕ satisfy

$$1 - \Phi(x) \sim \frac{\phi(x)}{x}$$
 as $x \to \infty$.

(c) Let X_1, X_2, \ldots be independent N(0, 1) random variables on (Ω, \mathcal{F}, P) . Show that

$$P\left(\limsup_{n \to \infty} \frac{X_n^2}{\log n} = 2\right) = 1.$$

Advanced Probability

3

3 Let (Ω, \mathcal{F}, P) be a probability space.

(a) Define the space $L^2 = L^2(\Omega, \mathcal{F}, P)$ and show that it is complete in that, for any Cauchy sequence $X_n \in L^2$ there exists $X \in L^2$ such that $X_n \to X$ in L^2 .

(b) Define the terms 'filtration' and 'martingale'. State the almost-sure martingale convergence theorem.

(c) Let $(X_n : n \ge 0)$ be a martingale such that $E(X_n^2) \le M < \infty$ for all n. Show that

$$E\left(\left(X_n - X_m\right)^2\right) = E\left(X_n^2\right) - E\left(X_m^2\right)$$

for $m \leq n$, and deduce that X_n converges in L^2 .

4 (a) Let X_1, X_2, \ldots be independent integrable random variables with $E(X_i) = 0$ for all *i*. Show that $S_n = X_1 + X_2 + \ldots + X_n$ defines a martingale with respect to the filtration given by

$$\mathcal{F}_n = \sigma\left(X_1, X_2, \dots, X_n\right) \,.$$

(b) Suppose further that the X_i are identically distributed and take values in $\{\ldots, -2, -1, 0, 1\}$ with $P(X_1 = 1) > 0$. Let $M(t) = E(e^{tX_1})$ and suppose $\tau > 0$. Show that $M(\tau) \in [1, \infty)$, and that $Z = e^{\tau S_n} / M(\tau)^n$

$$Z_n = e^{\tau S_n} / M(\tau)^r$$

is a martingale.

(c) [Continuation] Let $b \in \{1, 2, ...\}$ and $T = \inf\{n : S_n = b\}$. By considering the non-negative martingale $b - S_{n \wedge T}$ or otherwise, show that $P(T < \infty) = 1$.

(d) [Continuation] Show that the martingale $Z_{n \wedge T}$ is uniformly integrable, and deduce that

$$E\left(M(\tau)^{-T}\right) = e^{-\tau b}.$$

(e) Calculate $E(e^{-\alpha T})$ for $\alpha > 0$, in the special case when

$$P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}.$$

[Any general result which you use should be stated clearly.]

Advanced Probability

[TURN OVER

5 (a) Define the term 'uniformly integrable'. Let Z be integrable and \mathcal{F}_n a filtration. Show that the sequence $X_n = E(Z|\mathcal{F}_n), n \ge 1$, is uniformly integrable.

(b) For $x \in [0, 1)$, define for non-negative integers k, n,

$$b_n(x) = k2^{-n}$$
 if $k2^{-n} \leq x < (k+1)2^{-n}$.

Let $f:[0,1] \to \mathbb{R}$ be integrable, and let U be uniformly distributed on [0,1]. Show that $X_n = E(f(U)|\mathcal{F}_n)$ defines a uniformly integrable martingale with respect to the filtration $\mathcal{F}_n = \sigma(b_n(U))$. Let f_n be the step function on [0,1] given by

$$f_n(x) = 2^n \int_{b_n(x)}^{b_n(x)+2^{-n}} f(u) du$$
.

Show that $f_n(x) \to f(x)$ for almost every x, and

$$\int_0^1 |f_n(u) - f(u)| du \to 0 \quad \text{as} \quad n \to \infty \,.$$

6 Define a standard Brownian motion $B = (B_t : t \ge 0)$. Give a careful statement of the Strong Markov Property. Set

$$M_t = \sup \left\{ B_s : 0 \leqslant s \leqslant t \right\} \,.$$

Prove that

$$P(M_t \ge m, B_t \le x) = P(B_t \ge 2m - x)$$

for $t \ge 0$, m > 0, and $x \le m$.

Deduce that M_t has the same law as $|B_t|$.

For x > 0, let $T_x = \inf\{t : B_t \ge x\}$. Show that T_x has the same law as $(x/B_1)^2$, and calculate the density function of T_x .

END OF PAPER

Advanced Probability