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1 (a) Let M = (Mn)n≥0 be a discrete-time random process, which is integrable, and
adapted to a filtration (Fn)n≥0. Show that the following are equivalent:

(i) M is a martingale,

(ii) E(MT ) = E(M0) for all bounded stopping times T .

(b) Assume that M is a martingale and that Mn → M∞ a.s. as n →∞. State an
additional condition, expressible in terms of the laws µn(dx) = P(Mn ∈ dx), which would
allow us to conclude that E(MT ) = E(M0) for all, possibly infinite, stopping times T .

(c) Let (Zn)n≥1 be a sequence of independent N(0, 1) random variables and let
(an)n≥1 be a sequence of real numbers. Set M0 = 0 and define

Mn =
n∑

k=1

akZk, n ≥ 1.

By consideration of characteristic functions, or otherwise, show that Mn converges a.s.
only if

∑∞
k=1 a2

k < ∞.

(d) Under what additional conditions if any on the sequence (an)n≥1 can we
conclude that E(MT ) = 0 for T = inf{n ≥ 0 : Mn ≥ 1}?

2 (a) State the almost-sure martingale convergence theorem.

(b) Let f : [0, 1] → R be a Lipschitz function and define for n ∈ N, k ∈
{0, 1, . . . , 2n − 1} and ω ∈ [k2−n, (k + 1)2−n),

Xn(ω) = 2n{f((k + 1)2−n)− f(k2−n)}.

Show that, for a suitable probability space (Ω,F , P) and a suitable filtration (Fn)n≥0, the
sequence (Xn)n∈N may be considered as a martingale.

(c) Deduce that there exists a bounded measurable function ḟ : [0, 1] → R such
that, for all a, b ∈ [0, 1] with a ≤ b, we have∫ b

a

ḟ(x)dx = f(b)− f(a).

ADVANCED PROBABILITY



3

3 (a) Let X = (Xt)t∈I be a random process indexed by the set I of dyadic rationals
in the interval [0, 1]. Let p ≥ 1 and β > 1/p and suppose that

‖Xs −Xt‖p ≤ C|s− t|β , for all s, t ∈ I,

for some constant C < ∞. Show that, for any α ∈ [0, β − (1/p)), setting

Kα = 2
∞∑

n=0

2nα sup
k=0,1,...,2n−1

|X(k+1)2−n −Xk2−n |,

we have

(i) |Xs −Xt| ≤ Kα|s− t|α for all s, t ∈ I,

(ii) Kα ∈ Lp(P).

(b) Explain the rôle which this fact can play in the construction of Brownian motion
and in determining the regularity of the sample paths of Brownian motion.
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4 (a) Let B = (Bt)t≥0 be a Brownian motion in Rd, d ≥ 3, starting from x. Fix ε > 0
and set

T = inf{t ≥ 0 : |Bt| ≤ ε}.

Assume that |x| > ε. Show that

Px(T < ∞) = (ε/|x|)d−2.

(b) For t > 0 and x, y ∈ Rd, set

p(t, x, y) = (2πt)−d/2e−|x−y|2/2t.

By evaluating the integral

I =
∫ ∞

0

∫
Rd

p(t, x, y)p(s, 0, y)dyds

in two different ways, establish the identity∫
Rd

p(t, x, y)|y|2−ddy = cd

∫ ∞

t

p(s, 0, x)ds,

where cd is given by

cd =
∫ ∞

0

(2πs)−d/2e−1/2sds.

(c) Show that, for x 6= 0, as ε → 0, we have

ε2−dPx(T ≤ t) → cd

∫ t

0

p(s, 0, x)ds.

5 (a) Let W be a Brownian motion in Rn, n ≥ 1, starting from 0, and let U be
a random variable in Rn which is uniformly distributed on the unit ball {|x| ≤ 1} and
is independent of W . Set T = inf{t ≥ 0 : |Wt| = |U |}. Show that WT has the same
distribution as U .

(b) Suppose now that W starts from a general point x in some connected open set
D in Rn. Set

gD(x) = Ex(TD), x ∈ D,

where TD = inf{t ≥ 0 : Wt 6∈ D}. Show that if gD(x) < ∞ for some x ∈ D then
gD(y) < ∞ for all y ∈ D.

(c) For n = 1, 2, 3 and for D = Dn = (0,∞)n, determine whether gD is finite.

ADVANCED PROBABILITY



5

6 (a) Let µ be a Poisson random measure on R× (0,∞) with intensity

ν(dy, dt) = K(dy)dt = c|y|−2dydt,

where c ∈ (0,∞) is determined by

2c

∫ ∞

0

(1− cos z)
z2

dz = 1.

Set
Xt =

∫
(0,t]×{|y|≤1}

y(µ− ν)(dy, ds) +
∫

(0,t]×{|y|>1}
yµ(dy, ds).

Explain why these integrals are well-defined in spite of the fact that∫
{|y|≤1}

yK(dy) =
∫
{|y|>1}

yK(dy) = ∞.

(b) Write down the characteristic function of X1 and hence obtain the density
function of X1.

(c) Fix α ∈ (0,∞) and set X
(α)
t = αXαt. Show that the processes X(α) and X

have the same distribution.

END OF PAPER
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