

M. PHIL. IN STATISTICAL SCIENCE

Monday 6 June, 2005 9 to 12

ADVANCED PROBABILITY

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 (a) Let $M = (M_n)_{n \ge 0}$ be a discrete-time random process, which is integrable, and adapted to a filtration $(\mathcal{F}_n)_{n \ge 0}$. Show that the following are equivalent:

- (i) M is a martingale,
- (ii) $\mathbb{E}(M_T) = \mathbb{E}(M_0)$ for all bounded stopping times T.

(b) Assume that M is a martingale and that $M_n \to M_\infty$ a.s. as $n \to \infty$. State an additional condition, expressible in terms of the laws $\mu_n(dx) = \mathbb{P}(M_n \in dx)$, which would allow us to conclude that $\mathbb{E}(M_T) = \mathbb{E}(M_0)$ for all, possibly infinite, stopping times T.

(c) Let $(Z_n)_{n\geq 1}$ be a sequence of independent N(0,1) random variables and let $(a_n)_{n\geq 1}$ be a sequence of real numbers. Set $M_0 = 0$ and define

$$M_n = \sum_{k=1}^n a_k Z_k, \quad n \ge 1.$$

By consideration of characteristic functions, or otherwise, show that M_n converges a.s. only if $\sum_{k=1}^{\infty} a_k^2 < \infty$.

(d) Under what additional conditions if any on the sequence $(a_n)_{n\geq 1}$ can we conclude that $\mathbb{E}(M_T) = 0$ for $T = \inf\{n \geq 0 : M_n \geq 1\}$?

2 (a) State the almost-sure martingale convergence theorem.

(b) Let $f : [0,1] \to \mathbb{R}$ be a Lipschitz function and define for $n \in \mathbb{N}, k \in \{0,1,\ldots,2^n-1\}$ and $\omega \in [k2^{-n}, (k+1)2^{-n}),$

$$X_n(\omega) = 2^n \{ f((k+1)2^{-n}) - f(k2^{-n}) \}.$$

Show that, for a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a suitable filtration $(\mathcal{F}_n)_{n\geq 0}$, the sequence $(X_n)_{n\in\mathbb{N}}$ may be considered as a martingale.

(c) Deduce that there exists a bounded measurable function $\dot{f} : [0,1] \to \mathbb{R}$ such that, for all $a, b \in [0,1]$ with $a \leq b$, we have

$$\int_{a}^{b} \dot{f}(x)dx = f(b) - f(a).$$

ADVANCED PROBABILITY

3

3 (a) Let $X = (X_t)_{t \in I}$ be a random process indexed by the set I of dyadic rationals in the interval [0, 1]. Let $p \ge 1$ and $\beta > 1/p$ and suppose that

$$||X_s - X_t||_p \le C|s - t|^{\beta}, \quad \text{for all } s, t \in I,$$

for some constant $C < \infty$. Show that, for any $\alpha \in [0, \beta - (1/p))$, setting

$$K_{\alpha} = 2\sum_{n=0}^{\infty} 2^{n\alpha} \sup_{k=0,1,\dots,2^{n}-1} |X_{(k+1)2^{-n}} - X_{k2^{-n}}|,$$

we have

- (i) $|X_s X_t| \le K_{\alpha} |s t|^{\alpha}$ for all $s, t \in I$,
- (ii) $K_{\alpha} \in L^p(\mathbb{P}).$

(b) Explain the rôle which this fact can play in the construction of Brownian motion and in determining the regularity of the sample paths of Brownian motion.

ADVANCED PROBABILITY

[TURN OVER

4

4 (a) Let $B = (B_t)_{t \ge 0}$ be a Brownian motion in $\mathbb{R}^d, d \ge 3$, starting from x. Fix $\varepsilon > 0$ and set

$$T = \inf\{t \ge 0 : |B_t| \le \varepsilon\}.$$

Assume that $|x| > \varepsilon$. Show that

$$\mathbb{P}_x(T < \infty) = (\varepsilon/|x|)^{d-2}.$$

(b) For t > 0 and $x, y \in \mathbb{R}^d$, set

$$p(t, x, y) = (2\pi t)^{-d/2} e^{-|x-y|^2/2t}.$$

By evaluating the integral

$$I = \int_0^\infty \int_{\mathbb{R}^d} p(t, x, y) p(s, 0, y) dy ds$$

in two different ways, establish the identity

$$\int_{\mathbb{R}^d} p(t, x, y) |y|^{2-d} dy = c_d \int_t^\infty p(s, 0, x) ds,$$

where c_d is given by

$$c_d = \int_0^\infty (2\pi s)^{-d/2} e^{-1/2s} ds.$$

(c) Show that, for $x \neq 0$, as $\varepsilon \to 0$, we have

$$\varepsilon^{2-d} \mathbb{P}_x(T \le t) \to c_d \int_0^t p(s, 0, x) ds.$$

5 (a) Let W be a Brownian motion in $\mathbb{R}^n, n \ge 1$, starting from 0, and let U be a random variable in \mathbb{R}^n which is uniformly distributed on the unit ball $\{|x| \le 1\}$ and is independent of W. Set $T = \inf\{t \ge 0 : |W_t| = |U|\}$. Show that W_T has the same distribution as U.

(b) Suppose now that W starts from a general point x in some connected open set D in \mathbb{R}^n . Set

$$g_D(x) = \mathbb{E}_x(T_D), \quad x \in D,$$

where $T_D = \inf\{t \ge 0 : W_t \notin D\}$. Show that if $g_D(x) < \infty$ for some $x \in D$ then $g_D(y) < \infty$ for all $y \in D$.

(c) For n = 1, 2, 3 and for $D = D_n = (0, \infty)^n$, determine whether g_D is finite.

ADVANCED PROBABILITY

CAMBRIDGE

5

6 (a) Let μ be a Poisson random measure on $\mathbb{R} \times (0, \infty)$ with intensity

$$\nu(dy, dt) = K(dy)dt = c|y|^{-2}dydt,$$

where $c \in (0, \infty)$ is determined by

$$2c\int_0^\infty \frac{(1-\cos z)}{z^2}dz = 1.$$

 Set

$$X_t = \int_{(0,t] \times \{|y| \le 1\}} y(\mu - \nu)(dy, ds) + \int_{(0,t] \times \{|y| > 1\}} y\mu(dy, ds).$$

Explain why these integrals are well-defined in spite of the fact that

$$\int_{\{|y| \le 1\}} yK(dy) = \int_{\{|y| > 1\}} yK(dy) = \infty.$$

(b) Write down the characteristic function of X_1 and hence obtain the density function of X_1 .

(c) Fix $\alpha \in (0,\infty)$ and set $X_t^{(\alpha)} = \alpha X_{\alpha t}$. Show that the processes $X^{(\alpha)}$ and X have the same distribution.

END OF PAPER

ADVANCED PROBABILITY