M. Phil. IN STATISTICAL SCIENCE

ADVANCED PROBABILITY

Attempt FOUR questions.
There are six questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 a) State and prove Doob's maximal inequality.
b) Let ξ_{1}, ξ_{2}, \ldots be independent random variables with $\mathrm{E} \xi_{j}=0$ and $\mathrm{E}\left[\xi_{j}{ }^{2}\right]<\infty$. Denote $S_{n}=\xi_{1}+\ldots+\xi_{n}$. Prove Kolmogorov's inequality: for any $x>0$,

$$
\mathrm{P}\left(\max _{0 \leq m \leq n}\left|S_{m}\right| \geq x\right) \leq \frac{\mathrm{E}\left[S_{n}^{2}\right]}{x^{2}}
$$

c) Let X_{n} be a martingale with $X_{0}=0$ and $\mathrm{E}\left[X_{n}{ }^{2}\right]<\infty$. Show that for all $x>0$

$$
\mathrm{P}\left(\max _{0 \leq m \leq n} X_{m} \geq x\right) \leq \frac{\mathrm{E}\left[X_{n}^{2}\right]}{\mathrm{E}\left[X_{n}^{2}\right]+x^{2}}
$$

[Hint: Consider the process $\left(X_{n}+c\right)^{2}$ and optimize w.r.t. c.]

2 a) Let X be a non-negative random variable with $\mathrm{E} X^{2}<\infty$. Show that its Laplace transform, $\phi_{X}(\lambda) \equiv \mathrm{E} e^{-\lambda X}, \lambda \geq 0$, is differentiable for any $\lambda>0$ and has the following decomposition:

$$
\phi_{X}(\lambda) \equiv \mathrm{E} e^{-\lambda X}=1-\mathrm{E} X \lambda+\frac{\mathrm{E} X^{2}}{2} \lambda^{2}+o\left(\lambda^{2}\right)
$$

as $\lambda \rightarrow 0$.
b) Let B_{t} be a Brownian motion starting from 0 . For $a>0$, denote by T the exit time from the interval $(-a, a)$, ie, $T=\inf \left\{t: B_{t} \notin(-a, a)\right\}$. Show that

$$
\phi_{T}(\lambda)=\frac{1}{\cosh (a \sqrt{2 \lambda})}
$$

and deduce that $\mathrm{E} T=a^{2}, \operatorname{Var} T=2 a^{4} / 3$.

3 a) Let $\xi_{k}, k \geq 1$, be integrable non-negative random variables satisfying

$$
\mathrm{E}\left(\xi_{n+1} \mid \xi_{1}, \ldots, \xi_{n}\right) \leq \xi_{n}+\delta_{n}
$$

where $\delta_{n} \geq 0$ are constants and $\sum \delta_{n}<\infty$. Show that ξ_{n} converges (a.s.) to a finite limit ξ.
b) Let $Y_{k}>0, k \geq 1$, be a sequence of finite random variables adapted to the filtration $\left(\mathcal{F}_{m}\right)_{m \geq 0}$. Denote $U_{1}=0, U_{k}=\sum_{j=1}^{k-1} Y_{j}$ and, for $a>0$, define

$$
\tau_{a}=\min \left\{n: \sum_{j=1}^{n} Y_{j}>a\right\}
$$

Show that $a-U_{n \wedge \tau_{a}}$ is a non-negative $\left(\mathcal{F}_{m}\right)_{m \geq 0}$-supermartingale for any $a>0$.
c) Let $X_{k}>0, Y_{k}>0, k \geq 1$, be sequences of finite random variables defined on the same probability space and adapted to the filtration $\left(\mathcal{F}_{m}\right)_{m \geq 0}$. Suppose that X_{n} are integrable and, almost surely, we have $\sum_{k} Y_{k}<\infty$ and

$$
\mathrm{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) \leq X_{n}+Y_{n}, \quad n \geq 0
$$

Show that X_{n} converges (a.s.) to a finite limit.

4 State and prove Kolmogorov's criterion of continuity of trajectories for continuoustime random processes.

Deduce that trajectories of Brownian motion are (a.s.) Hölder continuous of exponent α, for any $\alpha<1 / 2$.

5 a) Assume n "stars" are located in the interval $[-n, n]$ on the real line. Their locations are independent, each being uniformly distributed in the interval. Each star has mass $m>0$, and the gravitational constant is unity. The force which will be exerted on a unit mass at the origin (the field strength) is then

$$
F_{n}=\sum_{j=1}^{n} \frac{m \operatorname{sign}\left(X_{j}\right)}{X_{j}^{2}}
$$

where X_{j} is the coordinate of the j 'th star and $\operatorname{sign}(x)$ is the usual sign function. Show that the distributions of F_{n} converge weakly as $n \rightarrow \infty$.
b) Suppose that the inverse-square attraction in a) were replaced by an inverse p 'th power attraction. Show that for p satisfying $0<1 / p<2$, one gets convergence to the stable law of index $1 / p$, ie.,

$$
\mathrm{E} \exp \left\{i t F_{n}\right\} \rightarrow \exp \left\{-c_{p}|t|^{1 / p}\right\}, \quad \text { as } n \rightarrow \infty
$$

with some constant $c_{p}>0$ to be found.
c) Suppose that the attraction is as in a) but the number of stars in $[-n, n]$ is random, namely,

$$
F_{n}=\sum_{j=1}^{M} \frac{m \operatorname{sign}\left(X_{j}\right)}{X_{j}^{2}},
$$

where M is a Poisson random variable with parameter n, idependent of all X_{j}. Find the corresponding weak limit of the sequence F_{n}.
$6 \quad$ a) Let sequences X_{n} and Y_{n} of random variables converge in probability to random variables X and Y respectively. Show that $X_{n}+Y_{n}$ converges in probability to $X+Y$.
b) We say that a sequence of random variables converges weakly if their distributions converge weakly. Show by counterexample that the analogue of the statement in a) for weak convergence may not be true.
c) Let a sequence X_{n} converge weakly to a random variable X and let a sequence Y_{n} converge weakly to a constant random variable Y. Show that $X_{n}+Y_{n}$ converges weakly to $X+Y$.

