Probability and Statistics 1 2011–12 Solutions to Progress Test

- 1. (i) The sketch should demonstrate that the density is symmetric about 0.
 - (ii) $1 = -c \int_{-1}^{0} x(1-x^2) dx + c \int_{0}^{1} x(1-x^2) dx = 2c \left(\frac{1}{2} \frac{1}{4}\right) = \frac{c}{2}$. Hence c = 2. By symmetry, $\mathbb{E}(X) = 0$. Therefore $\operatorname{Var}(X) = \mathbb{E}(X^2) = 2 \int_{0}^{1} (2x^3 - 2x^5) dx = 4 \left(\frac{1}{4} - \frac{1}{6}\right) = \frac{1}{3}$.
 - (iii) $\mathbb{P}(0 < X \le x) = \int_0^x cy(1-y^2) = x^2 \frac{1}{2}x^4$ for $0 \le x \le 1$. $\mathbb{P}(-x < X \le 0)$ is the same, by symmetry.
 - (iv) $\mathbb{P}(Y \leq y) = \mathbb{P}(X^2 \leq y) = \mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y}) = 2y y^2 \text{ for } 0 \leq y \leq 1.$ Therefore $f_Y(y) = 2(1-y)$ for 0 < y < 1.
- 2. (i) The probability that there are two or more claims on an individual policy is $\theta = 1 e^{-0.2}(1 + 0.2) = 1 1.2e^{-0.2} = 0.0175.$
 - (ii) The number of policies, X, which have to be considered before finding one with 2 or more claims has a geometric distribution with parameter θ . $\mathbb{P}(X \ge 50) = \sum_{50}^{\infty} \theta(1 \theta)^{x-1} = (1 \theta)^{49} = 0.4205.$
 - (iii) a) The distribution is Binomial with parameters 150 and θ . The expectation is $150\theta = 2.63$, the variance $150\theta(1-\theta) = 2.58$.
 - b) Using binomial probabilities, we get

$$\mathbb{P}(Y \ge 3) = 1 - [p_Y(0) + p_Y(1) + p_Y(2)] = 1 - [0.0705 + 0.1887 + 0.2507] = 0.4901.$$

Instead, we could use the Poisson approximation, since θ is small and $k\theta < 5$. This gives us

$$\mathbb{P}(Y \ge 3) \approx 1 - [p_Y(0) + p_Y(1) + p_Y(2)] = 1 - [0.0722 + 0.1897 + 0.2494] = 0.4887.$$

- **3.** (i) This is $\frac{1}{2} \times 0.4 + \frac{1}{2} \times 0.3 = \frac{7}{20}$ or 0.35.
 - (ii) By independence, the answer is $0.35^2 = 0.1225$ or $\frac{49}{400}$.
 - (iii) We already have the probability of a 2–0 scoreline in the series. We need to add the probability of a 1–0 scoreline, i.e. the probability that team A wins one and the other is drawn. This is $2 \times 0.35 \times 0.3 = 0.21$. Adding this to the previous answer gives 0.3325 or $\frac{133}{400}$.
 - (iv) The probability that team A won the toss both times and won both matches is $(\frac{1}{2} \times 0.4)^2 = 0.04.$

Therefore the answer is $\frac{0.04}{0.1225} = 0.3265 = \frac{16}{49}$

4. (i) a) Diagram.

b) By independence, $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

$$\begin{split} \mathbb{P}(A^c \cap B^c) &= 1 - \mathbb{P}(A \cup B) = 1 - [\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)] \\ &= 1 - \mathbb{P}(A) - \mathbb{P}(B) + \mathbb{P}(A) \mathbb{P}(B) = [1 - \mathbb{P}(A)][1 - \mathbb{P}(B)] \\ &= \mathbb{P}(A^c) \mathbb{P}(B^c). \end{split}$$

- (ii) a) The event that (c) is correct and either the two correct answers are adjacent or(d) is also correct.
 - b) No. $B \cap A^c$ includes the possibility that (b) and (c) are the correct answers, which is not an element of C.

c) $A \cap B$ or $A \cap B \cap C^c$ would do here.

- 5. (i) Philosophy: 38, 46, 58; Zoology: 49, 56.5, 65.5. Philosophy: IQR is 20; 92 is a possible outlier. Zoology: IQR is 16.5; no outliers.
 - (ii) Diagram.
 - (iii) Location: The quartiles for Z are all higher than those for P, as is the sample mean.Spread: P has a higher IQR as well as a larger range, so it is more spread out.Skewness: P seems positively skewed, based on inter-quartile distances and on comparison of mean with median. Z is more symmetric, based on the same data, but slightly positively skewed.
- 6. (i) A histogram would be most appropriate, though marks would also be awarded for a correctly drawn cumulative frequency diagram.
 - (ii) $\bar{x} = \frac{\sum xf_x}{n} = \frac{4217}{71} = 59.39.$ $s_x^2 = \frac{\sum x^2 f_x - n\bar{x}^2}{n-1} = \frac{14000}{70} = 200.$
 - (iii) It is intended that linear interpolation be used here. There are 71 observations. LQ: in the 50–59 range. We solve $\frac{x-49.5}{10} = \frac{17.75-16}{20}$, giving a LQ equal to 49.5+0.88 = 50.4 to 1dp.

Median: in the 50–59 range. We solve $\frac{x-49.5}{10} = \frac{35.5-16}{20}$, giving a LQ equal to 49.5 + 9.75 = 59.3 to 1dp.

UQ: in the 60–69 range. We solve $\frac{x-59.5}{10} = \frac{53.25-36}{21}$, giving a LQ equal to 59.5+8.21 = 67.7 to 1dp.