Probability and Statistics 1 2011-12

Solutions to Progress Test

1. (i) The sketch should demonstrate that the density is symmetric about 0 .
(ii) $1=-c \int_{-1}^{0} x\left(1-x^{2}\right) d x+c \int_{0}^{1} x\left(1-x^{2}\right) d x=2 c\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{c}{2}$. Hence $c=2$.

By symmetry, $\mathbb{E}(X)=0$.
Therefore $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)=2 \int_{0}^{1}\left(2 x^{3}-2 x^{5}\right) d x=4\left(\frac{1}{4}-\frac{1}{6}\right)=\frac{1}{3}$.
(iii) $\mathbb{P}(0<X \leq x)=\int_{0}^{x} c y\left(1-y^{2}\right)=x^{2}-\frac{1}{2} x^{4}$ for $0 \leq x \leq 1 . \mathbb{P}(-x<X \leq 0)$ is the same, by symmetry.
(iv) $\quad \mathbb{P}(Y \leq y)=\mathbb{P}\left(X^{2} \leq y\right)=\mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y})=2 y-y^{2}$ for $0 \leq y \leq 1$.

Therefore $f_{Y}(y)=2(1-y)$ for $0<y<1$.
2. (i) The probability that there are two or more claims on an individual policy is $\theta=$ $1-e^{-0.2}(1+0.2)=1-1.2 e^{-0.2}=0.0175$.
(ii) The number of policies, X, which have to be considered before finding one with 2 or more claims has a geometric distribution with parameter $\theta . \mathbb{P}(X \geq 50)=\sum_{50}^{\infty} \theta(1-$ $\theta)^{x-1}=(1-\theta)^{49}=0.4205$.
(iii) a) The distribution is Binomial with parameters 150 and θ.

The expectation is $150 \theta=2.63$, the variance $150 \theta(1-\theta)=2.58$.
b) Using binomial probabilities, we get

$$
\mathbb{P}(Y \geq 3)=1-\left[p_{Y}(0)+p_{Y}(1)+p_{Y}(2)\right]=1-[0.0705+0.1887+0.2507]=0.4901
$$

Instead, we could use the Poisson approximation, since θ is small and $k \theta<5$. This gives us

$$
\mathbb{P}(Y \geq 3) \approx 1-\left[p_{Y}(0)+p_{Y}(1)+p_{Y}(2)\right]=1-[0.0722+0.1897+0.2494]=0.4887
$$

3. (i) This is $\frac{1}{2} \times 0.4+\frac{1}{2} \times 0.3=\frac{7}{20}$ or 0.35 .
(ii) By independence, the answer is $0.35^{2}=0.1225$ or $\frac{49}{400}$.
(iii) We already have the probability of a $2-0$ scoreline in the series. We need to add the probability of a $1-0$ scoreline, i.e. the probability that team A wins one and the other is drawn. This is $2 \times 0.35 \times 0.3=0.21$. Adding this to the previous answer gives 0.3325 or $\frac{133}{400}$.
(iv) The probability that team A won the toss both times and won both matches is $\left(\frac{1}{2} \times 0.4\right)^{2}=0.04$.
Therefore the answer is $\frac{0.04}{0.1225}=0.3265=\frac{16}{49}$
4. (i) a) Diagram.
b) By independence, $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.

$$
\begin{aligned}
\mathbb{P}\left(A^{c} \cap B^{c}\right) & =1-\mathbb{P}(A \cup B)=1-[\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)] \\
& =1-\mathbb{P}(A)-\mathbb{P}(B)+\mathbb{P}(A) \mathbb{P}(B)=[1-\mathbb{P}(A)][1-\mathbb{P}(B)] \\
& =\mathbb{P}\left(A^{c}\right) \mathbb{P}\left(B^{c}\right)
\end{aligned}
$$

(ii) a) The event that (c) is correct and either the two correct answers are adjacent or (d) is also correct.
b) No. $B \cap A^{c}$ includes the possibility that (b) and (c) are the correct answers, which is not an element of C.
c) $A \cap B$ or $A \cap B \cap C^{c}$ would do here.
5. (i) Philosophy: 38, 46, 58; Zoology: 49, 56.5, 65.5.

Philosophy: IQR is $20 ; 92$ is a possible outlier.
Zoology: IQR is 16.5; no outliers.
(ii) Diagram.
(iii) Location: The quartiles for Z are all higher than those for P , as is the sample mean. Spread: P has a higher IQR as well as a larger range, so it is more spread out.
Skewness: P seems positively skewed, based on inter-quartile distances and on comparison of mean with median. Z is more symmetric, based on the same data, but slightly positively skewed.
6. (i) A histogram would be most appropriate, though marks would also be awarded for a correctly drawn cumulative frequency diagram.
(ii) $\bar{x}=\frac{\sum x f_{x}}{n}=\frac{4217}{71}=59.39$.
$s_{x}^{2}=\frac{\sum x^{2} f_{x}-n \bar{x}^{2}}{n-1}=\frac{14000}{70}=200$.
(iii) It is intended that linear interpolation be used here. There are 71 observations.

LQ: in the $50-59$ range. We solve $\frac{x-49.5}{10}=\frac{17.75-16}{20}$, giving a LQ equal to $49.5+0.88=$ 50.4 to 1 dp .

Median: in the $50-59$ range. We solve $\frac{x-49.5}{10}=\frac{35.5-16}{20}$, giving a LQ equal to $49.5+$ $9.75=59.3$ to 1 dp .
UQ: in the $60-69$ range. We solve $\frac{x-59.5}{10}=\frac{53.25-36}{21}$, giving a LQ equal to $59.5+8.21=$ 67.7 to 1 dp .

