Probability and Statistics 1 2006-07

Progress Test

16 January 2007, $2.30-4.00 \mathrm{pm}$

Answer all 6 questions. The total number of marks available is 50 .

1. A panel reviews videos of 80 football matches and assigns to each match a percentage value indicating the proportion of decisions which the referee judged correctly. Figure 1 (below) is a histogram illustrating the data set. Note that the interval widths are $6,4,4,5$ and 4 .
(i) Calculate the number of matches in each of the five categories.
(ii) a) On graph paper draw a cumulative frequency diagram.
b) Read off the median and quartiles of the data set.
c) Comment on the symmetry or skewness of the data set.

2. 18 office workers, 8 male and 10 female, are given training to improve their times for running the 400 metres. The percentage improvements in their times are as follows:

Male	11	7	13	8	32	13	22	6		
Female	15	11	19	21	16	9	14	13	17	20

(i) Display the data on a back-to-back stem-and-leaf diagram.
[2 marks]
(ii) Calculate the median and quartiles for each data set and determine whether there are any outliers present.
[5 marks]
(iii) Draw a box-and-whisker plot and compare the two samples in terms of location and spread.
3. A group of scientists is asked to comment on the threat to global civilisation in the next 1000 years represented by three possible catastrophes:

W: global warming by at least $7^{\circ} \mathrm{C}$
S: eruption of a supervolcano
D: an incurable disease
The scientists agree that, taking all other circumstances into account, the probabilities of the catastrophes are $\mathbb{P}(W)=\frac{3}{4}, \mathbb{P}(S)=0.2$ and $\mathbb{P}(D)=0.4$. However, they are not independent: if S occurs, the chance of an incurable disease will be 50%, and if W occurs the chance of a supervolcano is $\frac{2}{9}$.
(i) Assuming the scientists' predictions are correct, calculate $\mathbb{P}(S \cap D)$ and $\mathbb{P}(S \cap W)$.
(ii) Express in set-theoretic notation the event that the planet will be affected by global warming and an incurable disease but that there will be no supervolcano eruption.
(iii) Express in words the event $W \cap(S \cup D)^{c}$.
(iv) The scientists claim that the chance that none of the three catastrophes takes place is just one in ten. Prove that the event in (ii) has probability $\frac{11}{60}$.
[3 marks]
4. A family always takes a summer holiday in Spain, Italy or Greece. The probability that they enjoy their holiday is 60% if the holiday is in Spain, 70% if in Greece, 40% if in Italy. When the family enjoys a holiday, they go back to the same country in the following year, except that they never visit one country for more than two years in a row. After spending two years in a country, or after a holiday they didn't enjoy, they choose one of the other two countries (probability $\frac{1}{2}$ each). In 2003 and 2004 the family went on holiday to Spain.
(i) Draw a tree diagram illustrating the family's possible holiday destinations in 2005 and 2006.
[2 marks]
(ii) What is the probability that the family takes a holiday in Greece in 2006? [1 mark]
(iii) Given that the family visits Italy in 2006, calculate
a) the probability that the family went to Italy in 2005;
b) the probability that the family visits Spain in 2007.
5. A stallholder in a market has a box of T-shirts to sell. There are at least 20 in each size (small, medium, large and extra large). From experience the stallholder knows that 15% of customers buy small T-shirts, 20% medium, 35% large and 30% extra large.
(i) Find the probability that the sizes of the T-shirts bought by the first two customers are different.
[3 marks]
(ii) Out of the first 20 T -shirts sold, what is the probability that at least 5 are large?
(iii) Write down the distribution of the number of T-shirts which are sold until (and including) the first medium-sized T-shirt. (Give the name of the distribution and its expectation.)
[2 marks]
6. A continuous random variable, X, has cumulative distribution function, F_{X}, given by

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<0 \\ 0.02 x^{2} & \text { if } 0 \leq x<5 \\ 1-0.02(10-x)^{2} & \text { if } 5 \leq x<10 \\ 1 & \text { if } x \geq 10\end{cases}
$$

(i) Calculate and sketch the density function, f_{X}, of X.
(ii) Find the expectation and variance of X.
(iii) Calculate $\mathbb{P}(4<X<8)$.

Formulae

$$
\begin{gathered}
\mathbb{P}(A \cup B \cup C)=\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(A \cap B)-\mathbb{P}(A \cap C)-\mathbb{P}(B \cap C)+\mathbb{P}(A \cap B \cap C) . \\
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
\end{gathered}
$$

Distribution	Notation	Mean	Variance	$p(x)$	Domain
Binomial	$\operatorname{Bin}(k, \theta)$	$k \theta$	$k \theta(1-\theta)$	$\binom{k}{x} \theta^{x}(1-\theta)^{k-x}$	$x=0,1, \ldots, k$
Poisson	$\operatorname{Pois}(\lambda)$	λ	λ	$e^{-\lambda} \frac{\lambda^{x}}{x!}$	$x=0,1, \ldots$
Geometric	$\operatorname{Geom}(\theta)$	θ^{-1}	$\theta^{-2}(1-\theta)$	$\theta(1-\theta)^{x-1}$	$x=1,2, \ldots$

Probability and Statistics 1 2006-07
 Solutions to Progress Test

1. (i) The table below shows the calculations. 2

Interval	Width	Frequency density	Frequency
$76.5-82.5$	6	1.5	9
$82.5-86.5$	4	3.5	14
$86.5-90.5$	4	5.25	21
$90.5-95.5$	5	6.2	31
$95.5-99.5$	4	1.25	5

(ii) a) Cumulative frequency diagram. 3
b) Median and quartiles are obtained by reading off the values on the x-axis corresponding to values $0.25,0.5$ and 0.75 (or 20,40 and 60) on the y-axis. The values which should be obtained are LQ 85.6, Median 89.7, UQ 93.1 (or not far off). 1
c) The histogram suggests a left skew, as does the comparison between mean and median. 1
2. (i) Interval widths of 5 seem suitable

Male			Female	
876	\mid	00	a	
331	10	134		
	\mid	10	5679	
2	20	01		
	\mid	20		
2	\mid	30		

2
(ii) Males: 8 observations; LQ is 7.5 , median 12, UQ 17.5. Outliers: the highest value is not quite 1.5 times the IQR above the UQ, so it can't be considered an outlier. 3
Females: quartiles are 13 and 19 , median 15.5. No outliers. 2
(iii) Box plot. 2

Location: on the whole the males show less improvement than the females, but there are exceptions. 1
Spread: the male data are more spread out than the female data. 1
3. \quad (i) $\quad \mathbb{P}(S \cap D)=\mathbb{P}(S) \mathbb{P}(D \mid S)=0.2 \times \frac{1}{2}=0.1$. 1
$\mathbb{P}(S \cap W)=\mathbb{P}(W) \mathbb{P}(S \mid W)=\frac{3}{4} \times \frac{2}{9}=\frac{1}{6} .1$
(ii) $W \cap D \cap S^{c} .1$
(iii) The world will be affected by global warming but there will be neither a killer disease nor a supervolcano. 1
(iv) Let q represent the probability of the event in (ii). Then $0.9=\mathbb{P}(S \cup W \cup D)=$ $0.2+q+\left(\frac{7}{12}-q\right)+\left(\frac{3}{10}-q\right)=\frac{13}{12}-q$. Hence $q=\frac{13}{12}-0.9=\frac{11}{60} .3$
4. (i) Tree diagram. 2
(ii) $\quad \mathbb{P}\left(G_{6}\right)=\mathbb{P}\left(I_{5} \cap G_{6}\right)+\mathbb{P}\left(G_{5} \cap G_{6}\right)=0.5 \times 0.3+0.5 \times 0.7=0.5 .1$
(iii) a) $\mathbb{P}\left(I_{5} \mid I_{6}\right)=\mathbb{P}\left(I_{5} \cap I_{6}\right) / \mathbb{P}\left(I_{6}\right)=\frac{0.5 \times 0.4}{0.5 \times 0.4+0.5 \times 0.15}=\frac{8}{11}$. 2
b) We have

$$
\begin{aligned}
\mathbb{P}\left(S_{7} \mid I_{6}\right) & =\frac{\mathbb{P}\left(I_{5} \cap I_{6} \cap S_{7}\right)+\mathbb{P}\left(G_{5} \cap I_{6} \cap S_{7}\right)}{\mathbb{P}\left(I_{6}\right)} \\
& =\frac{0.5 \times 0.4 \times 0.5+0.5 \times 0.15 \times 0.3}{0.275}=\frac{49}{110}=0.4454 .
\end{aligned}
$$

5. (i) The probability that they are the same is $0.15^{2}+0.2^{2}+0.35^{2}+0.3^{2}=0.0225+0.04+$ $0.1225+0.09=0.275 .2$
Hence the probability that they are different is 0.725 .1
(ii) Let X be the number of L T -shirts sold, so that $X \sim \operatorname{Bin}(20,0.35)$. We require $\mathbb{P}(X \geq 5)=1-[p(0)+p(1)+p(2)+p(3)+p(4)]=1-[0.0002+0.0020+0.0100+$ $0.0323+0.0738]=0.8818 .3$
(iii) Geometric distribution with mean 5. 2
6. (i) $f(x)=0.04 x$ for $0<x<5$ or $0.04(10-x)$ for $5<x<10$. 2

Sketch (triangular). 1
(ii) By symmetry, $\mathbb{E}(X)=5.1 \mathbb{E}\left(X^{2}\right)=\int_{0}^{5} 0.04 x^{3} d x+\int_{5}^{10} 0.04 x^{2}(10-x) d x=6.25+$ $\frac{4}{30}(1000-125)-(100-6.25)=29.167 .2$
To obtain the variance, subtract 25 : $\operatorname{Var}(X)=4.167 .1$
(iii) $\quad \mathbb{P}(4<X<8)=F(8)-F(4)=0.92-0.32=0.6 .2$

