Probability and Statistics 1 - Surgery Hours class (Andres Villegas) Exercise Sheet 8: Continuous Random Variables 2

- 1. On May 5, in a certain city, temperatures have been found to be normally distributed with mean $\mu = 24^{\circ}C$ and variance $\sigma^2 = 9$. The record temperature on that day is $27^{\circ}C$.
 - a) What is the probability that the record of $27^{\circ}C$ will be broken next May 5?
 - b) What is the probability that the record of 27°C will be broken at least 3 times during the next 5 years on May 5? (Assume that the temperatures during the next 5 years on May 5 are independent.)
 - c) How high must the temperature be to place it among the top 5% of all temperatures recorded on May 5?
- 2. Let *Z* be the standard normal random variable. If z > 0 and $F_Z(z) = \alpha$, what are $F_Z(-z)$ and $P(-z \le Z \le z)$?
- 3. A machine used to automatically fill 355ml water bottles. The actual amount put into each bottle is a normal random variable with mean 360ml and standard deviation of 4ml.
 - a) What proportion of bottles are filled with less than 355ml of water?
 - b) Suppose that the mean fill can be adjusted. To what value should it be set so that only 2.5% of bottles are filled with less than 355ml?
- 4. Suppose that a local vote is being held to see if a new manufacturing facility will be built in the locality. A polling company will survey 200 individuals to measure support for the new facility. If in fact 53% of the population oppose the building of this facility, use the normal approximation to the binomial, with a continuity correction, to approximate the probability that the poll will show a majority in favour?
- 5. Customers arrive randomly and independently at a service window, and the time between arrivals has an exponential distribution with a mean of 12 minutes. Let *X* equal the number of arrivals per hour. What is P(X = 10)? (Hint: When the time between successive arrivals has an exponential distribution with mean $\frac{1}{\lambda}$ (units of time), then the number of arrival per unit time has a Poisson distribution with parameter (mean) λ).
- 6. An investment account earns an annual interest rate R that follows a uniform distribution on the interval (0.04, 0.08). The value of a 10,000 initial investment in this account after one year is given by $V = 10,000e^{R}$. Determine the cumulative distribution function, $F_{V}(v)$ of V.
- 7. An actuary models the lifetime of a device using the random variable $Y = 10X^{0.8}$, where X is an exponential random variable with mean 1 year. Determine the probability density function $f_Y(y)$, for y > 0, of the random variable Y.