Probability and Statistics 1 - Surgery Hours class (Andres Villegas)

 Exercise Sheet 7 Solutions: Continuous Random Variables 11.

a) We have that

$$
\begin{aligned}
\int_{0}^{1} a x^{2} & =1 \\
\left.a \frac{x^{3}}{3}\right|_{0} ^{1} & =1 \\
\frac{a}{3} & =1
\end{aligned}
$$

Hence $a=3$.
b) We have

$$
\begin{aligned}
P\left(Y>\frac{1}{2}\right) & =P\left(\max \left\{X_{1}, X_{2}, X_{3}\right\}>\frac{1}{2}\right) \\
& =1-P\left(\max \left\{X_{1}, X_{2}, X_{3}\right\} \leq \frac{1}{2}\right) \\
& =1-P\left(X_{1} \leq \frac{1}{2}, X_{2} \leq \frac{1}{2}, X_{3} \leq \frac{1}{2}\right)
\end{aligned}
$$

But, since X_{1}, X_{2}, X_{3} are independent

$$
P\left(X_{1} \leq \frac{1}{2}, X_{2} \leq \frac{1}{2}, X_{3} \leq \frac{1}{2}\right)=P\left(X_{1} \leq \frac{1}{2}\right) P\left(X_{2} \leq \frac{1}{2}\right) P\left(X_{3} \leq \frac{1}{2}\right)
$$

In addition

$$
P\left(X_{i} \leq \frac{1}{2}\right)=\int_{0}^{1 / 2} 3 x^{2}=\left.3 \frac{x^{3}}{3}\right|_{0} ^{1 / 2}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}
$$

Therefore,

$$
\begin{aligned}
P\left(Y>\frac{1}{2}\right) & =1-P\left(X_{1} \leq \frac{1}{2}, X_{2} \leq \frac{1}{2}, X_{3} \leq \frac{1}{2}\right) \\
& =1-P\left(X_{1} \leq \frac{1}{2}\right) P\left(X_{2} \leq \frac{1}{2}\right) P\left(X_{3} \leq \frac{1}{2}\right) \\
& =1-\left(\frac{1}{8}\right)^{3} \\
& =1-\frac{1}{512} \\
& =\frac{511}{512}
\end{aligned}
$$

2.

a) $f(x)$ must satisfy

$$
\int_{1 / 2}^{3 / 2} k x(c 2-x) d x=1
$$

$$
\begin{aligned}
\left.k\left(\frac{c}{2} x^{2}-\frac{2}{3} x^{3}\right)\right|_{\frac{1}{2}} ^{\frac{3}{2}} & =1 \\
k\left[\frac{c}{2}\left(\frac{3}{2}\right)-\frac{2}{3}\left(\frac{3}{2}\right)^{3}-\frac{c}{2}\left(\frac{1}{2}\right)^{2}+\frac{2}{3}\left(\frac{1}{2}\right)^{3}\right] & =1 \\
k\left(c-\frac{13}{6}\right) & =1
\end{aligned}
$$

In addition we know that

$$
\begin{aligned}
E(X) & =0.9 \\
\int_{\frac{1}{2}}^{\frac{3}{2}} x f(x) & =0.9 \\
\int_{\frac{1}{2}}^{\frac{3}{2}} k x^{2}(c-2 x) & =0.9 \\
\left.k\left(\frac{c}{3} x^{3}-\frac{1}{2} x^{4}\right)\right|_{\frac{1}{2}} ^{\frac{3}{2}} & =0.9 \\
k\left[\frac{c}{3}\left(\frac{3}{2}\right)^{3}-\frac{1}{2}\left(\frac{3}{2}\right)^{4}-\frac{c}{3}\left(\frac{1}{2}\right)^{3}+\frac{1}{1}\left(\frac{1}{2}\right)^{4}\right] & =0.9 \\
k\left(\frac{13}{12} c-\frac{5}{2}\right) & =0.9
\end{aligned}
$$

Therefore we know that k and c satisfy $k\left(c-\frac{13}{6}\right)=1$ and $k\left(\frac{13}{12} c-\frac{5}{2}\right)=0.9$. Dividing these two equations we get

$$
\begin{gathered}
\frac{\frac{13}{12} c-\frac{5}{2}}{c-\frac{13}{6}}=\frac{9}{10} \\
\frac{13}{12} c-\frac{5}{2}=\frac{9}{10} c-\frac{117}{60} \\
\left(\frac{13}{12}-\frac{9}{10}\right) c=\frac{5}{2}-\frac{117}{60} \\
\frac{11}{60} c=\frac{11}{20} \\
c=3
\end{gathered}
$$

And therefore

$$
k=\frac{1}{c-\frac{13}{6}}=\frac{1}{3-\frac{13}{6}}=\frac{6}{5}
$$

b) Let Y be the number of gallons sold. We have

$$
Y=\left\{\begin{array}{lll}
1000 X & \text { if } & X \leq 1 \\
1000 & \text { if } & X>1
\end{array}\right.
$$

Then

$$
\begin{aligned}
E(Y) & =\int_{\frac{1}{2}}^{1} 1000 x f(x) d x+\int_{1}^{\frac{3}{2}} 1000 f(x) d x \\
& =\int_{\frac{1}{2}}^{1} 1000\left(\frac{6}{5}\right) x^{2}(3-2 x) d x+\int_{1}^{\frac{3}{2}} 1000\left(\frac{6}{5}\right) x(3-2 x) d x \\
& =1200\left(\int_{\frac{1}{2}}^{1} x^{2}(3-2 x) d x+\int_{1}^{\frac{3}{2}} x(3-2 x) d x\right) \\
& =1200\left(\left.\left(x^{3}-\frac{1}{2} x^{4}\right)\right|_{\frac{1}{2}} ^{1}+\left.\left(\frac{3}{2} x^{2}-\frac{2}{3} x^{3}\right)\right|_{1} ^{\frac{3}{2}}\right) \\
& =1200(0.40632+0.291667) \\
E(Y) & =837.5
\end{aligned}
$$

3.

a) $\quad E(T)=\frac{100+0}{2}=50, V(T)=\frac{(100-0)^{2}}{12}=833.3333$
b) In general $P(T>t)=\int_{t}^{100} \frac{1}{100} d x=\frac{100-t}{100}$. Therefore $P(T>57)=\frac{100-57}{100}=0.43$
c) For $40 \leq t \leq 100$, we have that

$$
\begin{gathered}
P(S>t)=P(T>t \mid T>40) \\
=\frac{P(T>t, T>40)}{P(T>40)} \\
=\frac{P(T>t)}{P(T>40)} \\
=\frac{\frac{100-t}{100}}{\frac{100-40}{100}} \\
=\frac{100-t}{60},
\end{gathered}
$$

It follows then that $F_{S}(t)=P(S \leq t)=1-P(S>t)=1-\frac{100-t}{60}$, for $40 \leq t<100$, which corresponds to the cumulative distribution function of a uniform random variable over [40,100].
d) $E(S)=\frac{100+40}{2}=70$ and $P(S>57)=\frac{100-57}{60}=0.7167$.
4. Let T be the time of failure of the printer. The expected cost of refunds is given by

$$
E(\text { cost of refunds })=100(200 P(T \leq 1)+100 P(1<T \leq 2))
$$

Since $T \sim \operatorname{Exp}(0.5)$ we have that $F(t)=P(T \leq t)=1-e^{-0.5 t}$. Hence

$$
\begin{gathered}
E(\text { cost of refunds })=100[200 P(T \leq 1)+100 P(1<T \leq 2)] \\
=100[200 F(1)+100(F(2)-F(1))] \\
=100\left[200\left(1-e^{-0.5}\right)+100\left(e^{-0.5}-e^{-0.5(2)}\right)\right] \\
=100[200(0.3937)+100(0.2386)] \\
=10255.90
\end{gathered}
$$

5. By the law of total probability

$$
\begin{aligned}
P(4<S<8) & \\
& =P(4<S<8 \mid N=0) P(N=0)+P(4<S<8 \mid N=1) P(N=1) \\
& +P(4<S<8 \mid N>1) P(N>1)
\end{aligned}
$$

We have

$$
\begin{gathered}
P(4<S<8 \mid N=0)=0 \\
P(4<S<8 \mid N=1)=\int_{4}^{8} \frac{1}{5} e^{-\frac{1}{5} x} d x=e^{-\frac{4}{5}}-e^{-\frac{8}{5}}=0.2474 \\
P(4<S<8 \mid N>1)=\int_{4}^{8} \frac{1}{8} e^{-\frac{1}{8} x} d x=e^{-\frac{4}{8}}-e^{-\frac{8}{8}}=0.2387
\end{gathered}
$$

Hence

$$
P(4<S<8)=0\left(\frac{1}{2}\right)+0.2474\left(\frac{1}{3}\right)+0.2387\left(\frac{1}{6}\right)=0.1223
$$

