Probability and Statistics 1 - Surgery Hours class (Andres Villegas)
 Exercise Sheet 5 Solutions: Discrete Random Variables 1

1. Let Y be the random variable for the number in the selected ball. We have that Y has a discrete uniform distribution over $\{1,2, \ldots, 25\}$. Hence, $E(Y)=\frac{1}{2}(25+1)=13$ and $\operatorname{Var}(X)=$ $\frac{1}{12}(25-1)(25-1+2)=52$. Since $X=1000 Y$, then $E(X)=E(1000 Y)=1000 E(X)=$ $1000(13)=13000$ and $\operatorname{Var}(X)=\operatorname{Var}(1000 Y)=1000^{2} \operatorname{Var}(X)=1000^{2}(52)=52000000$. Thus, the mean of X is $£ 13000$ and the standard deviation is $£ \sqrt{52000000}=£ 7211.10$
2.

a) Using C for a claim, N for no claim, then

$$
\begin{gathered}
P(\text { premium }=400)=P(C \text { in year } 3, \text { regardless of the first } 2 \text { years })=p \\
P(\text { premium }=400 k)=P\left(C N \text { in year } \frac{2}{3}, \text { regardless of the first year }\right)=p(1-p) \\
P\left(\text { premium }=400 k^{2}\right)=P\left(N N \text { in year } \frac{2}{3}, \text { regardless of the first year }\right)=(1-p)^{2}
\end{gathered}
$$

b)

$$
\begin{aligned}
E(\text { premium })= & 400 p+400 k p(1-p)+400 k^{2}(1-p)^{2} \\
& =400\left\{p+k p(1-p)+k^{2}(1-p)^{2}\right\}
\end{aligned}
$$

c) For $E($ premium $)=300$ when $p=0.1$ then

$$
\begin{gathered}
400\left\{0.1+(0.1)(009) k+0.9^{2} k^{2}\right\}=300 \\
0.1+0.09 k+0.81 k^{2}=0.75 \\
0.81 k^{2}+0.09 k-0.65=0
\end{gathered}
$$

Hence

$$
k=\frac{-0.09 \pm \sqrt{0.09^{2}+4(0.81)(0.65)}}{2(0.81)}=\frac{-0.09+1.454}{1.62}=0.84
$$

3.

a) We have that
$E($ Revenue $)=E($ income from tickets $)-E($ expenditure for overbooking $)$
Clearly $E($ income from tickets $)=21(50)=1050$.
Let N be the random variable for the number of tourists that show up. We have that $Y \sim \operatorname{Binomial}(21,0.98)$. Thuse, the probability of having to pay a penalty due to overbooking is $P(Y=21)=\binom{21}{21} 0.98^{21}=0.98^{21}=0.6543$. Therefore $E($ expenditure for overbooking $)=100 P(Y=21)=100(0.6543)=65.43$, and the expected revenue of the tour operator is 1050-65.43=984.57.
b) If the tour operator does not overbook (i.e. sells only 20 tickets) the expected revenue would be $20(50)=1000$ which is greater than the expected revenue under the overbooking strategy. Therefore, overbooking is not a profitable strategy for the tour operator.
c) For overbooking to be profitable it must hold that

$$
\begin{gathered}
E[\text { Revenue }] \geq 1000 \\
1050-100(1-p)^{21} \geq 1000 \\
(1-p)^{21} \leq 0.5
\end{gathered}
$$

$$
\begin{gathered}
p \geq 1-0.5^{\frac{1}{21}} \\
p \geq 0.0325
\end{gathered}
$$

4. Let N_{1} and N_{2} be the number of participants that complete the study in groups 1 and 2, respectively. We have that $N_{i} \sim \operatorname{Binomial}(10,0.8)$. Therefore, for each group, the probability that at least 9 participants complete the study is given by

$$
\begin{gathered}
P\left(N_{i} \geq 9\right)=P\left(N_{i}=9\right)+P\left(N_{i}=10\right) \\
=\binom{10}{9}(0.8)^{9}(0.2)+\binom{10}{10}(0.8)^{10} \\
=10(0.8)^{9}(0.2)+(0.8)^{10} \\
=0.2684+0.1074=0.3758
\end{gathered}
$$

The required probability is

$$
\begin{aligned}
P\left(N_{1} \geq 9, N_{2}<9 \text { or } N_{2} \geq 9, N_{1}<9\right) & =P\left(N_{1} \geq 9, N_{2}<9\right)+P\left(N_{2} \geq 9, N_{1}<9\right) \\
& =P\left(N_{1} \geq 9\right) P\left(N_{2}<9\right)+P\left(N_{2} \geq 9\right) P\left(N_{1}<9\right) \\
& =0.3758(1-0.3758)+0.3758(1-0.3758) \\
& =0.4691
\end{aligned}
$$

5. Let X be the event that the shipment comes from company X and let N be the random variable for the number of ineffective vials in the random sample. Using this notation the required probability is $P(X \mid N=1)$. By the Bayes' Theorem it follows that

$$
P(X \mid N=1)=\frac{P(N=1 \mid X) P(X)}{P(N=1 \mid X) P(X)+P(N=1 \mid \sim X) P(\sim X)}
$$

But

$$
\begin{gathered}
P(N=1 \mid X)=\binom{30}{1}(0.1)(0.9)^{29}=30(0.1)(0.9)^{29}=0.1413 \\
P(N=1 \mid \sim X)=\binom{30}{1}(0.02)(0.98)^{29}=30(0.02)(0.98)^{29}=0.3340
\end{gathered}
$$

Hence

$$
\begin{aligned}
P(X \mid N & =1)=\frac{P(N=1 \mid X) P(X)}{P(N=1 \mid X) P(X)+P(N=1 \mid \sim X) P(\sim X)} \\
& =\frac{(0.1413)\left(\frac{1}{5}\right)}{(0.1413)\left(\frac{1}{5}\right)+(0.3340)\left(\frac{4}{5}\right)}=0.0957
\end{aligned}
$$

6. Let N be the number of employees that achieve a high performance. We need to find C such $P(C N>120)<0.01$ which is equivalent to $P\left(N \leq \frac{120}{C}\right)>0.99$. The random variable N has a binomial distribution with parameters $n=20$ and $p=0.02$. Therefore we can tabulate the probability function and the distribution function of N.

x	$p(x)$	$F(x)=P(N \leq x)$
0	$\binom{20}{0}(0.98)^{20}=0.6676$	0.6675
1	$\binom{20}{1}(0.02)(0.98)^{19}=0.2725$	0.9401
2	$\binom{20}{2}(0.02)^{2}(0.98)^{18}=0.0528$	0.9929
3	$\binom{20}{3}(0.02)^{3}(0.98)^{17}=0.0065$	0.9994

Since the smallest x for which $P(N \leq x)>0.99$ is $x=2$, it must hold that $\frac{120}{C} \geq 2$ to satisfy $P\left(N \leq \frac{120}{C}\right)>0.99$, and hence the maximum value of C for which $P\left(N \leq \frac{120}{C}\right)>0.99$ is $C=\frac{120}{2}=60$.

