Probability and Statistics 1 - Surgery Hours class (Andres Villegas)

Exercise Sheet 3 Solutions: Axioms of probability, independence and conditional probability

1. a)

$$
\begin{aligned}
P\left(B^{c} \cap C^{c}\right) & =P\left((B \cup C)^{c}\right)=1-P(B \cup C) \\
& =1-(P(B)+P(C)-P(B \cap C)) \\
& =1-P(B)-P(C)+P(B \cap C) \\
& =1-P(B)-P(C)+P(B) P(C) \\
& =1-0.6-0.4+(0.6)(0.4) \\
& =0.24
\end{aligned}
$$

b)

$$
\begin{aligned}
P\left(B^{c} \cap C^{c}\right) & =1-P(B)-P(C)+P(B \cap C) \\
& =1-0.6-0.4+0 \\
& =0
\end{aligned}
$$

c) Since $B \cap C \subset B, C$ it follows that $P(B \cap C) \leq \min \{\{P(B), P(C)\}$. Therefore

$$
\begin{aligned}
P\left(B^{c} \cap C^{c}\right) & =1-P(B)-P(C)+P(B \cap C) \\
& \leq 1-P(B)-P(C)+\min \{\{P(B), P(C)\} \\
& =1-0.6-0.4+0.4 \\
& =0.4
\end{aligned}
$$

Note that the maximum probability is achieved in the case $C \subset B$.
2.
a) We have that $A=(A \cap B) \cup\left(A \cap B^{c}\right)$. Since $A \cap B$ and $A \cap B^{c}$ are mutually exclusive, then

$$
P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)
$$

Hence

$$
P(A \backslash B)=P\left(A \cap B^{c}\right)=P(A)-P(A \cap B)
$$

b) We have that $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$, with $A \backslash B, A \cap B$, and $B \backslash A$ mutually exclusive events. Thus

$$
P(A \cup B)=P(A \backslash B)+P(A \cap B)+P(B \backslash A)
$$

From exercise 2. a) $P(A \backslash B)=P(A)-P(A \cap B)$ and $P(B \backslash A)=P(B)-P(A \cap B)$, then

$$
\begin{aligned}
P(A \cup B) & =P(A \backslash B)+P(A \cap B)+P(B \backslash A) \\
& =P(A)-P(A \cap B)+P(A \cap B)+P(B)-P(A \cap B) \\
& =P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

3.

a) It is sufficient to show that $P\left(A \cap B^{c}\right)=P(A) P\left(B^{c}\right)$. But the right hand side of the above equation is equal to

$$
P(A) P\left(B^{c}\right)=P(A)(1-P(B))=P(A)-P(A) P(B)
$$

Since A and B are independent it follows that $P(A \cap B)=P(A) P(B)$. Then

$$
P(A) P\left(B^{c}\right)=P(A)-P(A) P(B)=P(A)-P(A \cap B)
$$

From exercise 2. a) we have $P(A)-P(A \cap B)=P\left(A \cap B^{c}\right)$. Therefore

$$
P(A) P\left(B^{c}\right)=P(A)-P(A) P(B)=P(A)-P(A \cap B)=P\left(A \cap B^{c}\right)
$$

completing the proof.
b) From De Morgan's law

$$
P\left(A^{c} \cap B^{c}\right)=P\left((A \cup B)^{c}\right)=1-P(A \cup B)=1-P(A)-P(B)+P(A \cap B)
$$

Since A and B are independent, then $P(A \cap B)=P(A) P(B)$. Therefore, we have

$$
\begin{equation*}
P\left(A^{c} \cap B^{c}\right)=1-P(A)-P(B)+P(A \cap B)=1-P(A)-P(B)+P(A) P(B) \tag{1}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
P\left(A^{c}\right) P\left(B^{c}\right)=(1-P(A))(1-P(B))=1-P(A)-P(B)+P(A) P(B) \tag{2}
\end{equation*}
$$

From (1) and (2) $P\left(A^{c} \cap B^{c}\right)=P\left(A^{c}\right) P\left(B^{c}\right)$, and hence A^{c} and B^{c} are independent.
4. Let A denote the event that the number 6 eventually comes up. We have

$$
P(A)=1-P\left(A^{c}\right)
$$

where A^{c} is the event that a 6 never comes up. Let A_{n}^{c} denote the event that the number 6 has not come up after n tosses of the dice. We have that $P\left(A_{n}^{c}\right)=\left(\frac{5}{6}\right)^{n}$, so the probability that a 6 never comes up is

$$
P\left(A_{c}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}^{c}\right)=\lim _{n \rightarrow \infty}\left(\frac{5}{6}\right)^{n}=0
$$

Hence $P(A)=1-P\left(A^{c}\right)=1-0=1$, which means that that a 6 will eventually come up.
5. Let N, L, H denote the event that the policyholder files no claims, a low claim, and a high claim, respectively. We need to find

$$
P(L \mid L \cup H)=\frac{P(L \cap(L \cup H))}{P(L \cup H)}=\frac{P(L)}{P(L \cup H)}=\frac{P(L)}{P(L)+P(H)}=\frac{16.9 \%}{16.6 \%+3.9 \%}=0.8125
$$

6. We have

$$
\begin{gathered}
p_{1}=\frac{1}{5} p_{0} \\
p_{2}=\frac{1}{5} p_{1}=\frac{1}{5}\left(\frac{1}{5} p_{0}\right)=\left(\frac{1}{5}\right)^{2} p_{0}
\end{gathered}
$$

In general $p_{n}=\left(\frac{1}{5}\right)^{n} p_{0}$. For the probabilities to be well defined they have to satisfy

$$
\sum_{n=0}^{\infty} p_{n}=1
$$

Therefore,

$$
\sum_{n=0}^{\infty} p_{n}=\sum_{n=0}^{\infty}\left(\frac{1}{5}\right)^{n} p_{0}=\frac{p_{0}}{1-\frac{1}{5}}=\frac{5}{4} p_{0}
$$

Hence $p_{0}=4 / 5$. Let N be the random variable representing the number of claims that a policyholder files. The required probability is $P(N>1)$. But

$$
\begin{aligned}
P(N>1) & =1-P(N \leq 1)=1-P(N=0)-P(N=1) \\
& =1-\frac{4}{5}+\frac{1}{5}\left(\frac{4}{5}\right)=\frac{1}{25}=0.04
\end{aligned}
$$

7. Let M, F, and S denote the events being male, being female, and smoking, respectively
a) $P(M \cap S)=\frac{19}{100}=0.19$
b) $P(M)=\frac{60}{100}=0.6$
c) $P(S)=\frac{31}{100}=0.31$
d) $P(S \mid M)=\frac{P(M \cap S)}{P(M)}=\frac{19 / 100}{60 / 100}=\frac{19}{60}=0.3167$
e) $P(M \mid S)=\frac{P(M \cap S)}{P(S)}=\frac{19 / 100}{31 / 100}=\frac{19}{31}=0.6129$
