Probability and Statistics 1 - Surgery Hours class (Andres Villegas)
 Exercise Sheet 2: Sets and basic probability

1. The corresponding Venn diagram is given below, where L, H, and A denote the set of people who purchased life insurance, health insurance, and auto insurance, respectively
a) 11 purchased no policies
b) 17 purchased only health insurance
c) $21+17+6=44$ purchased exactly one type of insurance
d) $21+12+17=50$ purchased life or health but not auto insurance

2. a)

$$
B \backslash A=\{x: x \in B, x \notin A\}=\left\{x: x \in B, x \in A^{c}\right\}=B \cap A^{c}
$$

This means that the set operation of difference can be written in terms of the operations of intersection and complementation.
b) By the definition of union and intersection,

$$
\begin{aligned}
A \cap(B \cup C) & =\{x: x \in A, x \in B \cup C\} \\
& =\{x: x \in A, x \in B \text { or } x \in A, x \in C\} \\
& =(A \cap B) \cup(A \cap C)
\end{aligned}
$$

Here we use the analogous logical law $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ where \wedge denotes "and" and V denotes "or".
3. The Venn diagram below illustrates the statements in this exercise.

Let U denote the universal set.
a) In order to prove that A is the disjoint union of $A \backslash B$ and $A \cap B$ we have to prove that
i) $\quad(A \backslash B) \cup(A \cap B)=A$ (Union)
ii) $\quad(A \backslash B) \cap(A \cap B)=\emptyset$. (Disjoint)

To show i) we have

$$
(A \backslash B) \cup(A \cap B)=\left(A \cap B^{c}\right) \cup(A \cap B)=A \cap\left(B^{c} \cup B\right)=A \cap U=A
$$

To show ii) we have

$$
(A \backslash B) \cap(A \cap B)=\left(A \cap B^{c}\right) \cap(A \cap B)=A \cap\left(B^{c} \cap B\right)=A \cap \emptyset=\varnothing
$$

b) In order to prove that $A \cup B$ is the disjoint union of $A \backslash B$ and $A \cap B$, and $B \backslash A$ we have to prove that
i) $\quad(A \backslash B) \cup(A \cap B) \cup(B \backslash A)=A \cup B$
ii) $\quad(A \backslash B) \cap(A \cap B)=\emptyset, \quad(A \backslash B) \cap(B \backslash A)=\varnothing$, and $(B \backslash A) \cap(A \cap B)=\varnothing$

We have

$$
\begin{aligned}
(A \backslash B) \cup(A \cap B) \cup(B \backslash A) & =A \cup(B \backslash A)=A \cup\left(B \cap A^{C}\right)=(A \cup B) \cap\left(A \cup A^{c}\right) \\
& =(A \cup B) \cap U=A \cup B
\end{aligned}
$$

From exercise 3 a) we have $(A \backslash B) \cap(A \cap B)=\emptyset$ and $(B \backslash A) \cap(A \cap B)=\emptyset$. In addition

$$
(A \backslash B) \cap(B \backslash A)=\left(A \cap B^{c}\right) \cap\left(B \cap A^{c}\right)=A \cap B^{c} \cap B \cap A^{c}=\emptyset
$$

completing the proof.
4. Proof 1: For each subset A of X, define the sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $a_{i}=1$ if $x_{i} \in A$ and 0 otherwise (For example for the empty set \varnothing the associated sequence is $(0,0, \ldots, 0)$ and for X the associated sequence is $(1,1, \ldots, 1))$. Counting the number of subsets of X is equivalent to counting the possible number of sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Since there are 2 possible values that each a_{i} can take, the total number of sequences is

$$
\underbrace{2 \times 2 \times \ldots \times 2}_{n \text { times }}=2^{n}
$$

Proof 2: We can see that enumerating the number of subsets of X is equivalent to counting all the ways of selecting k out of the n elements of X with $k=0,1, \ldots, n$. Therefore the total number of subsets is

$$
\sum_{k=0}^{n}\binom{n}{k}
$$

But from the binomial theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

It follows that

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

5. The probability of having no boys in the family is the probability of having three girls in the family. Since the probability of giving birth to a girl is $\frac{1}{2}$, hence the probability of having three girls is $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$.
6. Let S denote the set of points inside the triangle, and let A denote the set of points at least one inch from any corner. S and A are pictured in the Figure below. Note that S is an equilateral triangle of side 3 , and that the area outside of A is equal to half the area of a circle of radius 1. Thus

$$
p=\frac{\text { Area of } A}{\text { Area of } S}=\frac{\frac{\sqrt{3}}{4} 3^{2}-\frac{1}{2} \pi(1)^{2}}{\frac{\sqrt{3}}{4} 3^{2}}=1-\frac{2 \pi}{9 \sqrt{3}}=1-\frac{2 \pi \sqrt{3}}{27}
$$

