## MA1972 <br> Exam Solutions and Marking Scheme Summer 2008

1. TYPE OF DEGREE: BSc.
2. SESSION: Summer 2008.
3. MODULE CODE: MA1972.
4. MODULE TITLE: Discrete Mathematics, Probability \& Statistics.
5. TIME ALLOWED: 2 hours plus 5 minutes reading.
6. a. Answer all questions from Sections A

Answer two questions from section B. If more than 2 questions from section B are answered then the best two answers will be counted.
Section A carries $50 \%$ of the marks for the paper.
All questions in section $B$ are worth equal marks.

## $40 \%$ needed in both sections??

7. ADDITIONAL INFORMATION: Neave statistical tables are provided.

Sue: anything else?

## Section A

A1 $|\{x \in \mathbb{Z}: 0<\sqrt{ } x \leqslant 3\}|=|\{1,2,3,4,5,6,7,8,9\}|=9$.
A2 The statement $1+\sum_{m=1}^{n} 2^{m}=2^{n+1}-1$ is obviously true when $n=1$ and if it is true for $n=k$ then it is also true for $n=k+1$ because,

$$
1+\sum_{m=1}^{k+1} 2^{m}=1+\sum_{m=1}^{k} 2^{m}+2^{k+1}=2 \times 2^{k+1}-1=2^{k+2}-1 .
$$

Hence it is true for all $n \in \mathbb{N}$.

A3 We can take the sample space as $\Omega=\{O O, O E, E O, E E\}$ so that $A=$ $\{O E, O O\}, B=\{O E, E E\}$ and $C=\{O O, E E\}$. Since all outcomes are equally likely we have $P(A)=|A| /|\Omega|=1 / 2$. Similarly, $P(B)=P(C)=1 / 2$. Now,

$$
\begin{aligned}
& P(A \cap B)=P(\{O E\})=\frac{1}{4}=P(A) P(B), \\
& P(B \cap C)=P(\{E E\})=\frac{1}{4}=P(B) P(C), \\
& P(A \cap C)=P(\{O O\})=\frac{1}{4}=P(A) P(C),
\end{aligned}
$$

which shows that $A, B$ and $C$ are pairwise independent. On the other hand,

$$
P(A \cap B \cap C)=P(\varnothing)=0 \neq P(A) P(B) P(C),
$$

and so they are not collectively independent.

A4 If $X \sim B(n, p)$ for $n=5$ and $p=1 / 4$ then: $E(X)=n p=5 / 4 ; \operatorname{Var}(X)=$ $n p(1-p)=15 / 16 ; E\left(X^{2}\right)=\operatorname{Var}(X)+E(X)^{2}=15 / 16+25 / 16=5 / 2$. Also,

$$
P(X=3)=\binom{5}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{2}=\frac{45}{512} \approx 8.8 \%
$$

and,

$$
\begin{aligned}
P(X \geqslant 4) & =P(X=4)+P(X=5), \\
& =\binom{5}{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{1}+\binom{5}{5}\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{0}, \\
& =\frac{5 \times 3}{4^{5}}+\frac{1}{4^{5}}=\frac{16}{4^{5}}=\frac{1}{64} \approx 1.56 \% .
\end{aligned}
$$

## Section B

B1 a. Either: $\Omega=\{B B, B R\}$ and $E=\{B B\}$ giving $P(E)=\frac{1}{2}$.
Or:

$$
\begin{gathered}
P(\{B B\} \mid\{B B, B R\})=\frac{P(\{B B\} \cap\{B B, B R\})}{P(\{B B\} \cup\{B R\})} \\
\quad=\frac{P(\{B B\})}{P(\{B B\})+P(\{B R\})}=\frac{1 / 3}{1 / 3+1 / 3}=\frac{1}{2} .
\end{gathered}
$$

b. Define the event $A=\{$ student achieves a grade $A\}$, with $B, C$ and $F$ similarly defined.
These events are disjoint and we are given

$$
P(A)=0.2, \quad P(A \cup B)=0.38, \quad P(A \cup B \cup C)=P\left(F^{c}\right)=0.65
$$

Hence,
(i) $P(F)=1-P\left(F^{c}\right)=1-0.65=35 \%$.
(ii) $P(B)=P(A \cup B)-P(A)=0.38-0.2=18 \%$.
(iii) $P(C)=P(A \cup B \cup C)-P(A \cup B)=0.65-0.38=27 \%$.
c. Let $X$ be the event that a student attended a revision class. We have $P(A \mid X)=0.3$ and $P(X)=0.45$.
Hence,
(i) $0.2=P(A)=P(A \mid X) P(X)+P\left(A \mid X^{c}\right) P\left(X^{c}\right)=0.3 \times 0.45+P\left(A \mid X^{c}\right) \times$ 0.55 and so,

$$
P\left(A \mid X^{c}\right)=\frac{0.2-0.3 \times 0.45}{0.55}=11.818 \ldots \%
$$

(ii) $P(X \mid A)=\frac{P(A \mid X) P(X)}{P(A)}=\frac{0.3 \times 0.45}{0.2}=67.5 \%$.
d. Let $E_{m}$ be the event of a pass on the $m$-th attempt. Then $P\left(E_{m}\right)=4 / 10$ and $P\left(E_{m}^{c}\right)=6 / 10$ for each $m=1,2, \ldots$.
Let $X \in \mathbb{N}$ be the number of attempts until a pass is obtained then, with $p=4 / 10$,

$$
P(X=m)=p(1-p)^{m-1} \quad \text { and so } \quad X \sim \operatorname{Geom}(p)
$$

Hence,
(i) ... on the third try:

$$
P(X=3)=\frac{4}{10} \frac{6^{2}}{10^{2}}=\frac{144}{1000}=\frac{18}{125} \approx 14.5 \% .
$$

(ii) ... before the third try:

$$
P(X<3)=P(X=1)+P(X=2)=\frac{4}{10}\left(1+\frac{6}{10}\right)=\frac{16}{25}=64 \% .
$$

The average number of attempts is $E(X)=1 / p=2.5$.

B2 a. Choose 8 leaving 22, then 15 leaving 7 :

$$
\binom{30}{8}\binom{22}{15}=\frac{30!}{8!22!} \frac{22!}{15!7!}=\frac{30!}{8!15!7!} \approx 10^{12} .
$$

b. Choose two from each room and multiply...

$$
\binom{15}{2}\binom{8}{2}\binom{7}{2}=61,740
$$

c. There are $26+26+10=62$ characters giving $62^{6} \approx 5.68 \times 10^{10}$ passwords.

Four distinct letters followed by two distinct numbers can be chosen in

$$
52 \times 51 \times 50 \times 49 \times 10 \times 9=584,766,000
$$

ways. The two numbers can be inserted into the password in any one of $\binom{4}{2}=6$ ways giving,

$$
6 \times 584,766,000=3,508,596,000
$$

passwords.
d. Choose the first pair in $\binom{30}{2}$ ways, the second pair in $\binom{28}{2}$ ways and so on and then multiply:

$$
\begin{aligned}
\binom{30}{2} & \binom{28}{2}\binom{26}{2} \cdots\binom{4}{2}\binom{2}{2} \\
& =\frac{30!}{2!28!} \times \frac{28!}{2!26!} \times \frac{26!}{2!24!} \times \cdots \frac{4!}{2!2!} \times \frac{2!}{2!0!}, \\
& =\frac{30!}{(2!)^{15}} \approx 8.1 \times 10^{27}
\end{aligned}
$$

different pairs.
However, these same pairs can arise in 15 ! ways so there are only

$$
\frac{30!}{15!(2!)^{15}} \approx 6.19 \times 10^{15}
$$

distinct ways.
There are $15!\approx 1.31 \times 10^{12}$ ways the pairs can take their places on the coach. (The order in which each pair sits is not needed, but credit a non-full score if a sensible attempt is made.)

