MA1972
JUNE 2008

SOLUTIONS to statistics questions

A5
a) $\sum_{i} x_{i}=\mathbf{2 6 1}$ Mean $=\frac{\sum_{i} x_{i}}{n}=\frac{261}{10}=\mathbf{2 6 . 1}$
b) $\sum_{i} x_{i}^{2}=6961$

$$
\sqrt{\frac{6961-6812.1}{9}}=\sqrt{\frac{148.9}{9}}=\sqrt{16.5444}=4.0675
$$

A6 $\quad E[x]=\mu \quad \operatorname{Var}[x]=\sigma^{2}$

$$
\begin{aligned}
&\left(E[n x]=n E[x]=\underline{\underline{n \mu}} \quad \operatorname{Var}[n x]=E\left[(n x)^{2}\right]-(E[n x])^{2}\right. \\
&=n^{2} E\left[(x)^{2}\right]-n^{2}(E[x])^{2} \\
&=n^{2} \operatorname{Var}[x]={\underline{\underline{n^{2}} \sigma^{2}}}^{\underline{2}}
\end{aligned}
$$

A7

$$
f(x)=\left\{\begin{array}{cc}
\frac{c}{x^{4}} & x \geq 100 \\
0 & x<100
\end{array}\right.
$$

(a). $\int_{100}^{\infty} \frac{c}{x^{4}} d x=1 \quad$ ie $c\left[\frac{x^{-3}}{-3}\right]_{100}^{\infty}=c\left[\frac{1}{3(100)^{3}}\right]=1$

$$
\therefore \quad c=3(100)^{3}=3\left(10^{6}\right)
$$

$$
\begin{align*}
& E[x]=\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{100} x(0) d x+\int_{100}^{\infty} \frac{3\left(10^{6}\right)}{x^{3}} d x \tag{b}\\
&=0+3\left(10^{6}\right)\left[\frac{1}{-2 x^{2}}\right]_{100}^{\infty}=0+3\left(10^{6}\right)\left[0+\frac{1}{2\left(100^{2}\right)}\right] \\
&=\frac{3\left(10^{6}\right)}{2\left(10^{4}\right)}=\underline{\underline{150}} \\
& E\left[x^{2}\right]=\int_{-\infty}^{\infty} x^{2} f(x) d x=0+\int_{100}^{\infty} \frac{3\left(10^{6}\right)}{x^{2}} d x=3\left(10^{6}\right)\left[\frac{1}{-x}\right]_{100}^{\infty} \\
&=\frac{3\left(10^{6}\right)}{10^{2}}=\underline{3\left(10^{4}\right)}
\end{align*}
$$

$$
\operatorname{Var}[x]=E\left[x^{2}\right]-(E[x])^{2}=3\left(10^{4}\right)-\left[(1.5)\left(10^{2}\right)\right]^{2}=10^{4}\left[3-(1.5)^{2}\right]=\underline{\underline{7500}}
$$

A8

$$
n=100 \quad p=\frac{59}{100}=0.59 \quad \therefore q=0.41
$$

Since $n>30$ the proportion of students in debt is \approx normal
The 95% CI for π is $\quad p \pm z \sqrt{\frac{p(q)}{n}}=0.59 \pm 1.96 \sqrt{\frac{0.59(0.41)}{100}}$

$$
=0.59 \pm 0.096
$$

$$
\underline{\underline{i e}[0.494,0.686]}
$$

A9

$$
\sigma \text { is known }=16 \quad \mathrm{n}=15 \quad \mathrm{~s}=13.03
$$

H_{0} : Urban area standard deviation in IQ is the same as the whole country $\sigma=16$
H_{1} : Urban area standard deviation in IQ is not the same as whole country $\sigma \neq 16$
At 5\% level - Critical values are from χ^{2} distribution $\quad \chi_{L 2.5 \%}^{2}=\underline{\underline{5.629}}$

$$
\chi_{U 2.5 \%}^{2}=\underline{\underline{26.12}}
$$

$\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{14(169.8)}{256}=\underline{\underline{9.286}}$
\therefore Accept H_{0}

There is no evidence to suggest that the variability of IQ's in urban areas is different from the whole country.
a) State hypotheses
H_{0} : The new lacquer provides on average the same protection against rust $\mu_{1}=\mu_{2}$
H_{1} : The new lacquer provides added protection against rust $\mu_{2}>\mu_{1}$ (one tail)
State level of significance e.g. let $\alpha=5 \%$ then critical value $=1.64$
Test Statistic $\mathbf{Z}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\mathrm{~s}_{1}^{2}}{\mathrm{n}_{1}}+\frac{\mathrm{s}_{2}^{2}}{\mathrm{n}_{2}}}}=\frac{730-480}{\sqrt{\frac{80^{2}}{256}+\frac{100^{2}}{50}}}=\frac{250}{\sqrt{25+200}}$

$$
=\frac{250}{\sqrt{225}}=\frac{250}{15}=\underline{\mathbf{1 6 . 6 6 7}}
$$

Since $\mathrm{Z}>1.64$ reject H_{0} and accept H_{1}, there is a significant result.
CONCLUSION: there is evidence that the new lacquer provides added protection against rust.
b)

	OBSERVED					EXPECTED											
Firm	No	No	Total		Firm	No	No	Total									
Satisfied											Not				Satisfied	Not	
Customers			Satisfied			Customers			Satisfied								
A	576	24	600		A	565	35	600									
B	558	42	600		B	565	35	600									
C	580	20	600		C	565	35	600									
D	546	54	600		D	565	35	600									
	2260	140	2400			2260	140	2400									

We have a 4 X 2 contingency table problem, and can test the hypotheses,
H_{0} : The coach firms are the same service
H_{1} : There is a difference between the coach firms.
If $\alpha=5 \% \quad \chi_{3 \times 1}{ }^{2}=7.815$

$$
\begin{aligned}
\chi^{2}= & \frac{\sum_{i}\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=1 / 565\left(11^{2}+7^{2}+15^{2}+19^{2}\right)+1 / 35\left(11^{2}+7^{2}+15^{2}+19^{2}\right) \\
= & 756 / 565+756 / 35=1.3380+21.6=\mathbf{2 2 . 9 3 8}
\end{aligned}
$$

So we reject Ho, there is strong evidence that the firms have different levels of satisfaction amongst its customers.
a) British
$\mathrm{n}_{1}=20 \quad \overline{\mathrm{X}}_{1}=3.7$
$\mathrm{S}_{1}=0.6$
American $\quad \mathrm{n}_{2}=15 \quad \overline{\mathrm{X}}_{2}=4.2 \quad \mathrm{~S}_{2}=0.9$

State hypotheses
H_{0} : British \& American companies spend on average the same on R\&D $\mu_{1}=\mu_{2}$
H_{1} :British companies do not spend as much on R\&D as American companies $\mu_{2}>\mu_{1}$ (one tail)

We will assume that the distribution of expenditure is normal and the population variances are unknown but equal. Since the sample sizes are small we will use the t test with d.f. $=n_{1}+n_{2}-2=33$, and pooled sample standard deviation, S, where
$\mathrm{S}^{2}=\frac{\left(\mathrm{n}_{1}-1\right) \mathrm{S}_{1}^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{S}_{2}^{2}}{\left(\mathrm{n}_{1}-1\right)+\left(\mathrm{n}_{2}-1\right)}=\frac{19(0.6)^{2}+14(0.9)^{2}}{20+15-2}=\frac{19(0.36)+14(0.81)}{33}=\mathbf{0 . 5 5}$
Then the critical value of t for $\alpha=5 \%$ with d.f. $=\left(\mathrm{n}_{1}+\mathrm{n}_{2}-2\right)=33$ is $\mathrm{t}_{05}=\mathbf{- 1 . 6 9 2}$.
So we reject H0 if T <-1.692
Since $S^{2}=0.55$. $\mathbf{S}=\mathbf{0 . 7 4 1 6}$
The test statistic is $T=\frac{\bar{X}_{1}-\bar{X}_{2}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{3.7-4.2}{0.7416 \sqrt{\frac{1}{20}+\frac{1}{15}}}=\mathbf{- 1 . 9 7}$

$$
-1.97<\mathrm{t}_{.05}=-1.692, \text { so we reject Ho }
$$

We conclude that there is evidence to support the view that British companies spend less on R \& D than American companies.
b (i) We wish to test the hypotheses
Ho:The variances in expenditure are the same $\quad \sigma_{1}^{2}=\sigma_{2}^{2}$
H 1 : The variances in expenditure are not the same $\sigma_{1}{ }^{2} \neq \sigma_{2}^{2}$
At $\alpha=5 \%$ significance level. The right-tailed critical value of F with $v_{2}=(15-1)=$ 14 and $v_{1}=(20-1)=19 \quad \mathrm{U}_{0.025}=2.65$.

The test statistic is $\mathrm{F}=\frac{s_{2}^{2}}{s_{1}^{2}}=\frac{(0.9)^{2}}{(0.6)^{2}}=\mathbf{2 . 2 5}$
We accept Ho: $\sigma_{1}^{2}=\sigma_{2}^{2}$.
Thus, there is no evidence to suggest unequal variances.
(ii) There is no evidence against equal variances, therefore the t test is valid.

