MA1972 JUNE 2008 SOLUTIONS to statistics questions

A5 a)
$$\sum_{i} x_{i} = 261$$
 Mean $= \frac{\sum_{i} x_{i}}{n} = \frac{261}{10} = 26.1$
b) $\sum_{i} x_{i}^{2} = 6961$
The standard deviation $= \sqrt{\frac{\sum_{i} x_{i}^{2} - \frac{\sum_{i} x_{i}}{n}}{n-1}} = \sqrt{\frac{-\frac{6961 - \frac{(261)^{2}}{10}}{9}}{9}} = \sqrt{\frac{-\frac{6961 - \frac{(261)^{2}}{10}}{9}} = \sqrt{\frac{-\frac{148.9}{9}}{9}} = \sqrt{\frac{-\frac{148.9}{9}}{16.5444}} = 4.0675$

A6
$$E[x] = \mu$$
 $Var[x] = \sigma^{2}$
 $(E[nx] = nE[x] = \underline{n\mu}$ $Var[nx] = E[(nx)^{2}] - (E[nx])^{2}$
 $= n^{2}E[(x)^{2}] - n^{2}(E[x])^{2}$
 $= n^{2}Var[x] = \underline{n^{2}\sigma^{2}}$

A7
$$f(x) = \begin{cases} \frac{c}{x^4} & x \ge 100 \\ 0 & x < 100 \end{cases}$$

(a).
$$\int_{100}^{\infty} \frac{c}{x^4} dx = 1 \quad ie \quad c \left[\frac{x^{-3}}{-3} \right]_{100}^{\infty} = c \left[\frac{1}{3(100)^3} \right] = 1$$
$$\therefore \quad c = 3(100)^3 = 3(10^6)$$

(b)
$$E[x] = \int_{-\infty}^{\infty} xf(x)dx = \int_{-\infty}^{100} x(0)dx + \int_{100}^{\infty} \frac{3(10^6)}{x^3}dx$$
$$= 0 + 3(10^6) \left[\frac{1}{-2x^2}\right]_{100}^{\infty} = 0 + 3(10^6) \left[0 + \frac{1}{2(100^2)}\right]$$
$$= \frac{3(10^6)}{2(10^4)} = \underline{150}$$
$$E[x^2] = \int_{-\infty}^{\infty} x^2 f(x)dx = 0 + \int_{100}^{\infty} \frac{3(10^6)}{x^2}dx = 3(10^6) \left[\frac{1}{-x}\right]_{100}^{\infty}$$
$$= \frac{3(10^6)}{10^2} = \underline{3(10^4)}$$

$$Var[x] = E[x^{2}] - (E[x])^{2} = 3(10^{4}) - [(1.5)(10^{2})]^{2} = 10^{4}[3 - (1.5)^{2}] = \underline{7500}$$

A8
$$n = 100$$
 $p = \frac{59}{100} = 0.59$ $\therefore q = 0.41$

Since n > 30 the proportion of students in debt is \approx normal

The 95% CI for
$$\pi$$
 is $p \pm z \sqrt{\frac{p(q)}{n}} = 0.59 \pm 1.96 \sqrt{\frac{0.59(0.41)}{100}}$
= 0.59 \pm 0.096
ie [0.494, 0.686]

A9

 σ is known = 16 n = 15 s = 13.03 H_0 : Urban area standard deviation in IQ is the same as the whole country $\sigma = 16$ H_1 : Urban area standard deviation in IQ is not the same as whole country $\sigma \neq 16$

At 5% level – Critical values are from χ^2 distribution $\chi^2_{L2.5\%} = \underline{5.629}$ $\chi^2_{U2.5\%} = \underline{26.12}$

There is no evidence to suggest that the variability of IQ's in urban areas is different from the whole country.

a) State hypotheses

H₀: The new lacquer provides on average the same protection against rust $\mu_1 = \mu_2$ H₁: The new lacquer provides added protection against rust $\mu_2 > \mu_1$ (one tail)

State level of significance e.g. let $\alpha = 5\%$ then critical value = 1.64

Test Statistic
$$\mathbf{Z} = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{730 - 480}{\sqrt{\frac{80^2}{256} + \frac{100^2}{50}}} = \frac{250}{\sqrt{25 + 200}}$$
$$= \frac{250}{\sqrt{225}} = \frac{250}{15} = \frac{16.667}{15}$$

Since Z > 1.64 reject H_0 and accept H_1 , there is a significant result. CONCLUSION: there is evidence that the new lacquer provides added protection against rust.

OBSERVED					EXPECTED		
Firm	No	No	Total	Firm	No	No	Total
	Satisfied	Not			Satisfied	Not	
	Customers	Satisfied			Customers	Satisfied	
А	576	24	600	A	565	35	600
В	558	42	600	В	565	35	600
С	580	20	600	С	565	35	600
D	546	54	600	D	565	35	600
	2260	140	2400		2260	140	2400

We have a 4 X 2 contingency table problem, and can test the hypotheses,

H₀: The coach firms are the same service

H₁: There is a difference between the coach firms.

If
$$\alpha = 5\% \chi_{3 \times 1}^2 = 7.815$$

 $\chi^2 = \frac{\sum_{i} (O_i - E_i)^2}{E_i} = 1/565(11^2 + 7^2 + 15^2 + 19^2) + 1/35(11^2 + 7^2 + 15^2 + 19^2)$

= 756/565 + 756/35 = 1.3380 + 21.6 = 22.938

So we reject Ho, there is strong evidence that the firms have different levels of satisfaction amongst its customers.

b)

B3

B4	a)	British	$n_1 = 20$	$\overline{X}_1 = 3.7$	$S_1 = 0.6$
		American	$n_2 = 15$	$\overline{X}_2 = 4.2$	$S_2 = 0.9$

State hypotheses

H₀: British & American companies spend on average the same on R&D $\mu_1 = \mu_2$ H₁:British companies do not spend as much on R&D as American companies $\mu_2 > \mu_1$ (one tail)

We will assume that the distribution of expenditure is normal and the population variances are unknown but equal. Since the sample sizes are small we will use the t test with d.f. = $n_1 + n_2 - 2 = 33$, and pooled sample standard deviation, S, where

$$S^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{(n_{1}-1) + (n_{2}-1)} = \frac{19(0.6)^{2} + 14(0.9)^{2}}{20 + 15 - 2} = \frac{19(0.36) + 14(0.81)}{33} = 0.55$$

Then the critical value of t for $\alpha = 5\%$ with d.f. = $(n_1 + n_2 - 2) = 33$ is t.₀₅ = **-1.692**. So we reject H0 if T < -1.692

Since S² = 0.55. S = 0.7416 The test statistic is T = $\frac{\overline{X}_1 - \overline{X}_2}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{3.7 - 4.2}{0.7416\sqrt{\frac{1}{20} + \frac{1}{15}}} = -1.97$ $- 1.97 < t_{.05} = -1.692$, so we reject Ho

We conclude that there is evidence to support the view that British companies spend less on R & D than American companies.

b (i) We wish to test the hypotheses

Ho:The variances in expenditure are the same $\sigma_1^2 = \sigma_2^2$ H1: The variances in expenditure are not the same $\sigma_1^2 \neq \sigma_2^2$

At $\alpha = 5\%$ significance level. The right-tailed critical value of F with $v_2 = (15 - 1) = 14$ and $v_1 = (20 - 1) = 19$ $U_{0.025} = 2.65$.

The test statistic is F =
$$\frac{s_2^2}{s_1^2} = \frac{(0.9)^2}{(0.6)^2} = 2.25$$

We accept Ho: $\sigma_1^2 = \sigma_2^2$.

<u>Thus, there is no evidence to suggest unequal variances.</u> (ii) There is no evidence against equal variances, therefore the t test is valid.