Marking scheme and solutions for MA1972 (2007)

1. TYPE OF DEGREE: BSc.
2. SESSION: May 2007.
3. MODULE CODE: MA1972.
4. MODULE TITLE: Discrete Mathematics, Probability \& Statistics.
5. TIME ALLOWED: 2 hours plus 5 minutes reading.
6. a. Answer all questions from Sections A

Answer two questions from section B. If more than 2 questions from section B are answered then the best two answers will be counted.
Section A carries 50% of the marks for the paper.
All questions in section B are worth equal marks.
7. ADDITIONAL INFORMATION: Neave statistical tables are provided.

Section A

A1 $n=1$ gives $\frac{1}{3}\left(7^{1}-1\right)=6 / 3=2 \in \mathbb{N}$.
Assume $p=\frac{1}{3}\left(7^{n}-1\right) \in \mathbb{N}$ for some $n \in \mathbb{N}$ then,

$$
\frac{1}{3}\left(7^{n+1}-1\right)=\frac{1}{3}\left(7^{n+1}-7^{n}\right)+p=2 \times 7^{n}+p \in \mathbb{N} .
$$

Hence $\frac{1}{3}\left(7^{n}-1\right) \in \mathbb{N}$ for every $n \in \mathbb{N}$.
a. $|\{2,3,4,8,9\}|=5$
b. $|\mathcal{P}(A)|=2^{7}$ and $|\mathcal{P}(B)|=2^{9}$.

Each $X \in \mathcal{P}(A)$ can be paired with all 2^{9} elements of $\mathcal{P}(B)$.
Hence $|\mathcal{P}(A) \times \mathcal{P}(B)|=2^{7+9}=2^{16}=65536$.
c. Let $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$ be arbitrary.

Either $X \in \mathcal{P}(A)$ or $X \in \mathcal{P}(B)$ or both.
If $X \in \mathcal{P}(A)$ then $X \subseteq A$ and $X \subseteq A \cup B$.
Similarly $X \subseteq A \cup B$ if $X \in \mathcal{P}(B)$.
a. $26^{6} \times 10^{4} \approx 3.1 \times 10^{12}$.
b. $52^{6} \times 10^{4} \approx 1.98 \times 10^{14}$.

A4

$$
\begin{gathered}
P(A)=P(A \cap B)+P(A \cup B)-P(B)=\frac{1}{10}+\frac{4}{5}-\frac{1}{2}=\frac{2}{5} \\
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 10}{1 / 2}=\frac{1}{5} .
\end{gathered}
$$

$$
P\left(B \mid A^{c}\right)=\frac{P\left(A^{c} \cap B\right)}{P\left(A^{c}\right)}=\frac{P(B)-P(A \cap B)}{1-P(A)}=\frac{1 / 2-1 / 10}{1-2 / 5}=\frac{2}{3} .
$$

A and B are independent if $P(A \cap B)=P(A) P(B)$.
Since $1 / 10 \neq 1 / 5, A$ and B are not independent.

Section B

B1 Define the events:

$$
\begin{aligned}
S & =\{\text { served by Sam }\} \\
M & =\{\text { served by Mo }\} \\
Z & =\{\text { customer does not get a voucher }\} .
\end{aligned}
$$

a. (i) $P\left(Z^{c} \mid M\right)=11 / 12 \approx 0.917$.
(ii) Either $P\left(Z^{c}\right)=1-P(Z)=14 / 15 \approx 0.93$ because,

$$
P(Z)=P(Z \mid S) P(S)+P(Z \mid M) P(M)=\frac{1}{20} \times \frac{1}{2}+\frac{1}{12} \times \frac{1}{2}=\frac{1}{15}
$$

or

$$
P\left(Z^{c}\right)=P\left(Z^{c} \mid S\right) P(S)+P\left(Z^{c} \mid M\right) P(M)=\frac{1}{2}\left(\frac{19}{20}+\frac{11}{12}\right)=\frac{14}{15} .
$$

(iii)

$$
P(M \mid Z)=\frac{P(M \cap Z)}{P(Z)}=\frac{P(M \cap Z)}{P(M)} \frac{P(M)}{P(Z)}=\frac{P(Z \mid M) P(M)}{P(Z)} .
$$

Hence,

$$
P(M \mid Z)=\frac{1 / 12 \times 1 / 2}{1 / 15}=\frac{5}{8} .
$$

b. We have $X \sim B(50,0.1)$ so,

$$
\begin{aligned}
P(X>2)= & 1-P(X \leqslant 2)=1-P(X=0)-P(X=1)-P(X=2) \\
= & 1-\binom{50}{0}\left(\frac{1}{10}\right)^{0}\left(\frac{9}{10}\right)^{50}-\binom{50}{1}\left(\frac{1}{10}\right)^{1}\left(\frac{9}{10}\right)^{49} \\
& -\binom{50}{2}\left(\frac{1}{10}\right)^{2}\left(\frac{9}{10}\right)^{48}, \\
= & 1-\left(\frac{9}{10}\right)^{48}\left(\frac{1756}{100}\right) \approx 0.888 .
\end{aligned}
$$

$$
\mathbb{E}(X)=n p=50 \times 0.1=5
$$

$$
\operatorname{Var}(X)=n p(1-p)=5 \times 0.9=4.5
$$

c. If $Y=m$ then the first $m-1$ customers do not order a Gigabite burger.

Hence, with $p=0.1$,

$$
P(Y=m)=(1-p)^{m-1} p
$$

Therefore Y follows the geometric distribution with parameter $p=0.1$. [4 marks]

B2 a. There are $\binom{30}{4}=27$, 405 possible plays.
$E_{4}: P\left(E_{4}\right)=\binom{30}{4}^{-1} \approx 0.000036489$.
E_{3}^{\star} : There are $\binom{4}{3}$ ways to match any three main balls and the fourth ball can only be the bonus ball. Hence,

$$
P\left(E_{3}^{\star}\right)=\binom{4}{3}\binom{30}{4}^{-1}=\frac{4}{27,405} \approx 0.000146
$$

E_{3} : Any three main balls can be matched in $\binom{4}{3}$ ways and there are 25 possibilities for the remaining ball (excluding the bonus ball and the other main ball). Hence,

$$
P\left(E_{3}\right)=25 \times\binom{ 4}{3}\binom{30}{4}^{-1}=\frac{100}{27,405} \approx 0.00365
$$

b. There are $\binom{52}{3}=22,100$ possible hands.
(i) $P\left(\right.$ 'a triple of threes') $=\binom{4}{3}\binom{52}{3}^{-1}=\frac{4}{22,100}=\frac{1}{5525} \approx 0.000181$.
(ii) P ('a triple of any value except three') is given by,

$$
12 \times\binom{ 4}{3}\binom{52}{3}^{-1}=\frac{48}{22,100} \approx 0.00217
$$

(iii) There are 13 possibilities for any one of the three and for each of the two others there are three ways to make a pair. The third (nonpaired) card can be any one of 48 . Hence, P ('a pair') is given by,

$$
\frac{13 \times 2 \times 3 \times 48}{22,100}=\frac{3744}{22,100}=\frac{72}{425} \approx 0.1694
$$

c. We are told that $P(X=6)=P(X=1)=2 P(X=4)$ and $P(X=3)=$ $P(X=4)=2 P(X=2)$.
(i) Let $p=P(X=2)=P(X=5)$ then $P(X=3)=P(X=4)=2 p$ and $P(X=1)=P(X=6)=4 p$. Since these probabilities sum to unity we get $14 p=1$ and so $p=1 / 14 \approx 0.07143$.
(ii) $\mathbb{E}(X)=\sum_{x=1}^{6} x P(X=x)=(4+2+6+8+5+24) p=49 / 14=3.5$.
$\mathbb{E}\left(X^{2}\right)=\sum_{x=1}^{6} x^{2} P(X=x)=(4+4+18+32+25+144) p=227 / 14=$ 16.2143

Hence $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=227 / 14-49^{2} / 14^{2} \approx 3.9643$.

