- 1. TYPE OF DEGREE: BSc.
- 2. SESSION: May 2008.
- 3. MODULE CODE: MA1920.
- 4. MODULE TITLE: Linear Algebra.
- 5. TIME ALLOWED: **TWO hours** plus **five minutes** reading time.
- a. This paper consists of TWO SECTIONS. 6.

Answer ALL questions of SECTION A.

Answer TWO questions out of FOUR from SECTION B. If more than TWO questions from Section B are attempted, only the marks from the best TWO solutions will be counted.

Section A carries 50% of the total marks for the paper. Each question in Section B carries equal marks. An indication of the marks allocated to each sub-section of a question is shown in square brackets in the right hand margin.

7. ADDITIONAL INFORMATION: STANDARD FORMULAE: The matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ represents an anticlockwise rotation of angle θ about the origin. The matrix $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$ represents a reflection across the line $y = (\tan \theta)x$. The matrix $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ represents a shear in the *x*-direction of factor *k*. The matrix $\begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$ represents a shear in the *y*-direction of factor *k* k.

SECTION A

- A1. Let A and B be square $n \times n$ matrices such that det(A) = 5 and det(B) = -2.
 - a. Do we have enough information to compute det(AB)? If so, find det(AB).

b. Do we have enough information to compute det(A + B)? If so, find det(A + B). [2 marks]

[2 marks]

A2. a. Evaluate the modulus |-1-4i|. [2 marks]

b. Put the complex number $\frac{3-i}{1-i}$ into the form a + bi. [3 marks]

- c. Evaluate the product $3(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}) \cdot 4(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$ and express your answer in polar form. [2 marks]
- d. Find all complex numbers z such that $z^5 = \sqrt{32}$ and express them in polar form. [6 marks]

A3. Let P = (3, 0, -2) and Q = (5, 2, -1) be points in \mathbb{R}^3 .

- a. Find the distance between P and Q. [2 marks]
- b. Give a vector equation for the line L containing P and Q. [2 marks]
- c. Give an example of a point that lies on the line L from part (b), that is different from P and Q. [2 marks]
- A4. a. For what values of a is $\{(1, 1, a), (1, a, 1), (1, a, a)\}$ a basis for \mathbb{R}^3 ? [3 marks]
 - b. Let $\{\underline{u}, \underline{v}, \underline{w}, \underline{x}\}$ be a set of vectors that spans \mathbb{R}^3 such that

$$2\underline{u} + 0\underline{v} + 0\underline{w} - \underline{x} = \underline{0}.$$

List all subsets of $\{\underline{u}, \underline{v}, \underline{w}, \underline{x}\}$ that are bases for \mathbb{R}^3 . [3 marks]

- A5. Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be given by a shear S in the x-direction of factor -2 followed by a reflection R in the axis y = x.
 - a. Write down the matrices representing the transformations S and R. [2 marks]
 - b. Find the matrix representing T. [2 marks]
 - c. The unit square is the square whose corners are the points (0,0), (1,0), (1,1) and (0,1). Sketch the image of the unit square under T. [4 marks]

A6. Let
$$A = \begin{pmatrix} -2 & 5 \\ 6 & -3 \end{pmatrix}$$
. Find all eigenvalues and eigenvectors for A . [5 marks]

- A7. Let M be an invertible square matrix. Show that if \underline{v} is an eigenvector for M of eigenvalue λ , then \underline{v} is an eigenvector of M^{-1} with eigenvalue $\frac{1}{\lambda}$. [4 marks]
- A8. Let $W = \{(x, y, z) \in \mathbb{R}^3 : 3x + y z = 0\}$. Show that W is a vector subspace of \mathbb{R}^3 . [4 marks]

SECTION B

B1. a. Determine all possible values of the constants c and d such that the system of equations

$$-x - 2y + z = 1$$

$$6x + 11y - 2z = -1$$

$$2x + 7y + cz = d$$

has:

- (i) exactly one solution;
- (ii) no solution;
- (iii) infinitely many solutions.

In the cases where the system has solutions, determine the full set of solutions. [16 marks]

- b. Square matrices A and B are called *similar* if there exists an invertible matrix M such that $B = M^{-1}AM$.
 - (i) Show that if A and B are similar, then det(A) = det(B). [5 marks]
 - (ii) Let A and B be similar, and let B and C be similar. Show that A and C must also be similar. [4 marks]

B2. a. Let P = (2, 1, 0), Q = (-4, -9, 1) and R = (0, 4, -6) be points in \mathbb{R}^3 . Let l_1 and l_2 be the lines given by the vector equations

$$l_1: \quad (x, y, z) = (5, 0, 6) + \alpha(1, -1, 2),$$
$$l_2: \quad (x, y, z) = (1, 1, 3) + \beta(-2, -1, 1).$$

- (i) Find an equation of the form ax + by + cz = d for the plane that contains the points P, Q and R. [6 marks]
- (ii) The lines l_1 and l_2 intersect at a point S. Find the coordinates of S.

[4 marks]

- (iii) Does S lie on the plane found in part a(i)? [2 marks]
- (iv) Find the angle between l_1 and l_2 . [4 marks]
- (v) Find an example of a line that lies within the plane found in part a(i) and give the vector equation of that line.[2 marks]
- b. (i) Let $\underline{u} = (5, 4, 1), \underline{v} = (1, 2, -2)$ and $\underline{w} = (-1, -1, 6)$ be vectors in \mathbb{R}^3 . Are the elements of $\{\underline{u}, \underline{v}, \underline{w}\}$ linearly independent? Does $\{\underline{u}, \underline{v}, \underline{w}\}$ span \mathbb{R}^3 ? [4 marks]
 - (ii) How many vectors are there in a basis for \mathbb{R}^3 ? [1 mark]
 - (iii) Let $\{\underline{a}, \underline{b}, \underline{c}\}$ be a set of vectors in which *no* vector can be written as a linear combination of the others. Are the elements of $\{\underline{a}, \underline{b}, \underline{c}\}$ linearly independent? [2 marks]

- B3. a. A country consists of two islands, Algebra Island and Geometry Island. Let x_i be the population of Algebra Island in decade i, and let y_i be the population of Geometry Island in decade i. Let $M = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.9 \end{pmatrix}$. The populations of Algebra Island and Geometry Island from one decade to the next are given by $\begin{pmatrix} x_{i+1} \\ y_{i+1} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.9 \end{pmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix}$.
 - (i) Find the eigenvalues for M. [3 marks]
 - (ii) Find the eigenvectors for M. [4 marks]
 - (iii) Find a diagonal normal form for M. [2 marks]
 - (iv) Using part a(iii), find a formula for M^n . [6 marks]
 - b. Right now, Algebra Island has a population of 2.2 million and Geometry Island has a population of 1.4 million.
 - (i) How many people will each island have one decade from now? [2 marks]
 - (ii) How many people will the whole country have 30 years from now? [2 marks]
 - (iii) Describe the asymptotic behaviour of the vector $\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ as n grows large. [6 marks]

- B4. a. (i) Write down the quadratic form $6x^2 4xy + 3y^2$ using a real symmetric matrix A. [3 marks]
 - (ii) Find the normal form of the quadratic equation $6x^2 4xy + 3y^2 = 28$ and identify the type of conic. Roughly sketch the conic indicating where it cuts the new x' and y' axes. [12 marks]

b. Let
$$M = \begin{pmatrix} 1 & 2 & -3 \\ 3 & -5 & 2 \end{pmatrix}$$
.

- (i) Find bases for the kernel and range of the transformation $T_M : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ induced by M. [8 marks]
- (ii) Find the rank and nullity of T_M . [2 marks]