SECTION A

1. Let $M=\left(\begin{array}{ccc}1-a & 0 & 2 \\ 1 & 1 & -1 \\ 0 & 1 & 1\end{array}\right)$.
a. Evaluate the determinant of M.
b. For what values of a is M invertible?
2. a. (i) Evaluate the modulus $|2-3 i|$,
(ii) Put the complex number $\frac{3+4 i}{2 i}$ into the form $a+b i$.
b. Find all complex numbers z such that $z^{3}=8 i$.
3. Let $P=(-2,-5,0), Q=(3,7,2)$, and $R=(0,3,2)$ be points in \mathbb{R}^{3}.
a. Find the distance between P and Q, and find the distance between P and R.
b. Find the dot product of the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.
c. Find the angle between the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.
4. Let $\underline{u}=(2,2,-1), \underline{v}=(2,-2,1)$ and $\underline{w}=(5,-2,1)$ be vectors in \mathbb{R}^{3}.
a. Express \underline{w} as a linear combination of \underline{u} and \underline{v}.
b. Is $\{\underline{u}, \underline{v}, \underline{w}\}$ linearly independent? Explain.
c. Is $\{\underline{u}, \underline{v}, \underline{u}+\underline{v}+\underline{w}\}$ linearly independent? Explain.
5. Let $A=\left(\begin{array}{cc}5 & 1 \\ -2 & 2\end{array}\right)$.
a. Find the two eigenvalues of A.
b. Find an eigenvector of A for each of the eigenvalues found in (a).
6. The linear transformation $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ is given by:

- a shear S in the x-direction of factor 4 , followed by
- an anticlockwise rotation R of angle 90°, followed by
- an expansion E in the y-direction of factor 2 .
a. Write down the matrices representing the transformations S, R, and E.
b. Find the matrix representing T.
c. The unit square is the square whose corners are the points $(0,0),(1,0)$, $(1,1)$, and $(0,1)$. Find the image of the unit square under T.

7. Let W be the set of points (x, y, z) in \mathbb{R}^{3} parameterised by

$$
x=4 t, \quad y=t+2, \quad z=-t^{2} .
$$

Is W a subspace of \mathbb{R}^{3} ?
8. Let $T_{A}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be the linear transformation induced by $A=\left(\begin{array}{cc}1 & 2 \\ -2 & -4\end{array}\right)$.
a. Find bases for the kernel and range of T_{A}.
b. Find the rank and nullity of T_{A}.

SECTION B

1. a. Let A be an $n \times n$ matrix and $\underline{b} \in \mathbb{R}^{n}$. If $A \underline{x}=\underline{b}$ has no solution, what do we know about A ?
b. Determine all possible values of the constants c and d such that the system of equations

$$
\begin{aligned}
2 x+4 y+z & =-5 \\
x-y-2 z & =-3 \\
4 x+2 y+c z & =d
\end{aligned}
$$

has:
(i) exactly one solution;
(ii) no solution;
(iii) infinitely many solutions.

In the cases where the system has solutions, determine the full set of solutions.
c. Interpret the three cases (bi), (bii) and (biii) geometrically.
2. Let $P=(1,-2,4), Q=(0,3,1)$ and $R=(-2,0,2)$. Let l be the line given by the vector equation $(-2,1,1)+t(1,2,-1)$.
a. Find an equation for the line through the points P and Q.
b. Find an equation for the plane through the points P, Q and R.
c. Find the point of intersection of the line l with the plane found in part (b).
d. Find the angle between the normal to the plane from (b) and the line l.
e. Find the vector cross product of $(1,2,-1)$ with the normal to the plane from part (b).
f. Show that the vector found in (e) is parallel to the plane from (b).
g. Give an example of a plane that has no points in common with the plane from (b).
3. a. Write down the following quadratic form using a real symmetric matrix A (d is a non-zero constant).

$$
x^{2}+4 x y+y^{2}=d
$$

b. Find the normal form of the quadratic equation and identify the type of conic. How does the type of conic change for positive and negative values of $d \neq 0$?
c. Briefly describe the change of coordinates you used in (b). If it was a rotation, what was the angle? If it was a reflection, what was the axis of reflection?
d. Roughly sketch the conics for $d>0$ and for $d<0$, indicating where they cut the new x^{\prime} and y^{\prime} axes.
e. Briefly explain one way that you might have chosen a different change of coordinates to the one you chose in (c).
4. Let $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ 3 & -1 & 4 \\ 7 & 1 & 2\end{array}\right)$.
a. Find the kernel and range for the transformation $T_{A}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ induced by A.
b. Find bases for the kernel and range of T_{A}.
c. Find the image of the plane $3 x+4 y-7 z=0$ under T_{A}.
d. If $T_{1}: \mathbb{R}^{2} \mapsto \mathbb{R}^{4}$ has rank 2 , what is it's nullity?
e. If $T_{2}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ is not invertible, what do we know about the dimension of its kernel?
f. Suppose that $\{\underline{u}, \underline{v}, \underline{w}\}$ is a linearly independent set of vectors. For what real values of a is $\{a \underline{u}-\underline{v}, a \underline{v}-\underline{w}, a \underline{w}-u\}$ linearly independent?
g. Suppose that $\{\underline{u}, \underline{v}, \underline{w}, \underline{x}\}$ is a linearly independent set of vectors in \mathbb{R}^{5}. Do we know if $\{\underline{u}, \underline{v}, \underline{w}\}$ is linearly independent? Explain briefly.

