SECTION A

1. Let
$$M = \begin{pmatrix} 1-a & 0 & 2 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
.
a. Evaluate the determinant of M . [2 marks]

b. For what values of a is M invertible? [2 marks]

2. a. (i) Evaluate the modulus |2-3i|, [2 marks]

- (ii) Put the complex number $\frac{3+4i}{2i}$ into the form a + bi. [3 marks]
- b. Find all complex numbers z such that $z^3 = 8i$. [6 marks]

3. Let P = (-2, -5, 0), Q = (3, 7, 2), and R = (0, 3, 2) be points in \mathbb{R}^3 .

- a. Find the distance between P and Q, and find the distance between P and R. [3 marks]
- b. Find the dot product of the vectors \overrightarrow{PQ} and \overrightarrow{PR} . [2 marks]
- c. Find the angle between the vectors \overrightarrow{PQ} and \overrightarrow{PR} . [2 marks]
- 4. Let $\underline{u} = (2, 2, -1), \underline{v} = (2, -2, 1)$ and $\underline{w} = (5, -2, 1)$ be vectors in \mathbb{R}^3 .

a. Express \underline{w} as a linear combination of \underline{u} and \underline{v} .	[3 marks]
b. Is $\{\underline{u}, \underline{v}, \underline{w}\}$ linearly independent? Explain.	[1 mark]
c. Is $\{\underline{u}, \underline{v}, \underline{u} + \underline{v} + \underline{w}\}$ linearly independent? Explain.	[3 marks]

5. Let
$$A = \begin{pmatrix} 5 & 1 \\ -2 & 2 \end{pmatrix}$$
.

a. Find the two eigenvalues of A. [3 marks]

- b. Find an eigenvector of A for each of the eigenvalues found in (a). [3 marks]
- 6. The linear transformation $T : \mathbb{R}^2 \mapsto \mathbb{R}^2$ is given by:
 - a shear S in the x-direction of factor 4, followed by
 - an anticlockwise rotation R of angle 90°, followed by
 - an expansion E in the y-direction of factor 2.
 - a. Write down the matrices representing the transformations S, R, and E. [3 marks]
 - b. Find the matrix representing T. [2 marks]
 - c. The unit square is the square whose corners are the points (0,0), (1,0), (1,1), and (0,1). Find the image of the unit square under T. [3 marks]
- 7. Let W be the set of points (x, y, z) in \mathbb{R}^3 parameterised by

$$x = 4t, \quad y = t + 2, \quad z = -t^2.$$

Is W a subspace of \mathbb{R}^3 ?

8. Let $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation induced by $A = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$.

a. Find bases for the kernel and range of T_A . [4 marks]

[2 marks]

b. Find the rank and nullity of T_A . [1 mark]

SECTION B

- 1. a. Let A be an $n \times n$ matrix and $\underline{b} \in \mathbb{R}^n$. If $A\underline{x} = \underline{b}$ has no solution, what do we know about A? [3 marks]
 - b. Determine all possible values of the constants c and d such that the system of equations

$$2x + 4y + z = -5$$
$$x - y - 2z = -3$$
$$4x + 2y + cz = d$$

has:

- (i) exactly one solution;
- (ii) no solution;
- (iii) infinitely many solutions.

In t	he	cases	where	the	system	has	solutions,	determine	the	full	set	of	
solu	tior	ns.											[16 marks]

- c. Interpret the three cases (bi), (bii) and (biii) geometrically. [6 marks]
- 2. Let P = (1, -2, 4), Q = (0, 3, 1) and R = (-2, 0, 2). Let *l* be the line given by the vector equation (-2, 1, 1) + t(1, 2, -1).

a.	Find an equation for the line through the points P and Q .	[3 marks]
b.	Find an equation for the plane through the points P , Q and R .	[6 marks]
c.	Find the point of intersection of the line l with the plane found in part (b).	[3 marks]
d.	Find the angle between the normal to the plane from (b) and the line l .	[4 marks]
e.	Find the vector cross product of $(1, 2, -1)$ with the normal to the plane from part (b).	[3 marks]
f.	Show that the vector found in (e) is parallel to the plane from (b).	[3 marks]
g.	Give an example of a plane that has no points in common with the plane from (b).	[3 marks]

3. a. Write down the following quadratic form using a real symmetric matrix A (d is a non-zero constant).

$$x^2 + 4xy + y^2 = d$$

[3 marks]

- b. Find the normal form of the quadratic equation and identify the type of conic. How does the type of conic change for positive and negative values of $d \neq 0$? [10 marks]
- c. Briefly describe the change of coordinates you used in (b). If it was a rotation, what was the angle? If it was a reflection, what was the axis of reflection?
- d. Roughly sketch the conics for d > 0 and for d < 0, indicating where they cut the new x' and y' axes. [4 marks]
- e. Briefly explain one way that you might have chosen a different change of coordinates to the one you chose in (c). [3 marks]

4. Let
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 3 & -1 & 4 \\ 7 & 1 & 2 \end{pmatrix}$$
.

a.	Find the kernel and range for the transformation $T_A : \mathbb{R}^3 \mapsto \mathbb{R}^3$ induced by A .	[6 marks]
b.	Find bases for the kernel and range of T_A .	[4 marks]
c.	Find the image of the plane $3x + 4y - 7z = 0$ under T_A .	[5 marks]
d.	If $T_1 : \mathbb{R}^2 \mapsto \mathbb{R}^4$ has rank 2, what is it's nullity?	[2 marks]
e.	If $T_2: \mathbb{R}^3 \mapsto \mathbb{R}^3$ is not invertible, what do we know about the dimension of its kernel?	[2 marks]
f.	Suppose that $\{\underline{u}, \underline{v}, \underline{w}\}$ is a linearly independent set of vectors. For what real values of a is $\{\underline{au} - \underline{v}, \underline{av} - \underline{w}, \underline{aw} - u\}$ linearly independent?	[4 marks]
g.	Suppose that $\{\underline{u}, \underline{v}, \underline{w}, \underline{x}\}$ is a linearly independent set of vectors in \mathbb{R}^5 . Do we know if $\{\underline{u}, \underline{v}, \underline{w}\}$ is linearly independent? Explain briefly.	[2 marks]