1. TYPE OF DEGREE: BSc.
2. SESSION: May 2009.
3. MODULE CODE: MA1915.
4. MODULE TITLE: Calculus and Numerical Methods.
5. TIME ALLOWED: 3 hours (plus 5 minutes reading time).
6. a. NUMBER OF QUESTIONS: A1-10, B1-4, Full marks: All of A and 2 of B.
b. (LEVEL 1 MOSTLY): Section A / B
7. ADDITIONAL INFORMATION: None

## Section A

A1. Without using L'Hôpital's rule, evaluate:
a. $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}$;
b. $\lim _{x \rightarrow \infty} \frac{x^{3}+3 x^{2}+2}{6 x^{3}+3 x-1}$.

A2.
a. Let $f(x)=\cos (1 / x)$. Find $f^{\prime}(x)$.
b. Let $g(x)=\sin (3 x)$. Find $g^{\prime \prime \prime}(x)$.

A3. Solve the inequality $|3 x-1|>2$. Express your answer using interval notation.

A4. Sketch the curve given by the following equation:

$$
x^{2}+y^{2}+3 x-4 y=-\frac{9}{4} .
$$

A5. Find the natural domain of the function rule:

$$
f(x)=\frac{1}{\sqrt{x-2}-3} .
$$

A6. a. Express $|x-3|$ using a piecewise definition.
b. Hence evaluate $\int_{0}^{4}|x-3| \mathrm{d} x$.

A7. Determine whether the following series are convergent or divergent:
a. $\sum_{n=1}^{\infty} \frac{n^{3 / 2}}{\sqrt{n^{3}+3}}$;
b. $\sum_{n=1}^{\infty} \frac{\tanh (n)}{n!}$.

A8. Given that

$$
F(x, y)=x y\left(x^{2}+y^{2}\right),
$$

where $x=r \cos \theta$ and $y=r \sin \theta$, use the Chain rule to determine $\frac{\partial F}{\partial r}$ and $\frac{\partial F}{\partial \theta}$. Express your answer in terms of $r$ and $\theta$.

A9. Using Lagrange polynomials, fit an interpolating polynomial through the points $f(-0.2)=1.2, f(0.2)=0.7, f(0.5)=1.7$, and hence give an estimate of $f(0.0)$.

A10. Apply the Composite Simpsons Rule (CSR) with N=2 to approximate the integral

$$
\int_{1}^{2} \cos \left(x^{2}\right) d x
$$

and estimate the error. Hint: $\left|\int_{a}^{b} f d x-S_{N} f\right| \leq \frac{(b-a)^{5}}{2880 N^{4}} \max _{x \in[a, b]}\left|f^{(4)}(x)\right| . \quad$ [6 marks]

## Section B

B1. a. Determine the exact value of the following integrals:
(i) $\int_{0}^{\pi} \frac{\sin x}{2+\cos x} \mathrm{~d} x$;
(ii) $\int_{0}^{1} x \sqrt{3+x^{2}} \mathrm{~d} x$.
b. Find $\int \frac{x^{2}}{x^{2}-4 x+3} \mathrm{~d} x$.
c. For $n \geq 0$, let $I_{n}$ be given by

$$
I_{n}=\int_{0}^{2} x^{n} e^{-x} \mathrm{~d} x
$$

(i) Determine the exact value of $I_{1}$.
(ii) By integrating by parts, show that for $n \geq 1$,

$$
I_{n}=-\frac{2^{n}}{e^{2}}+n I_{n-1}
$$

(iii) Hence find the exact value of $I_{3}$.
d. Find $\int_{0}^{\infty} x e^{-x} \mathrm{~d} x$.
[You may assume that $\lim _{x \rightarrow \infty} x e^{-x}=0$.]

B2. a. Given that $3 x+2 y^{3}=x y$ find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at the point $x=-1, y=1 . \quad$ [8 marks]
b. Let $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\sin ^{-1}(\cos x)$.
(i) Evaluate $g(\pi)$ and $g(2 \pi)$.
(ii) Find $g^{\prime}(x)$.

$$
\text { [Hint: } \frac{\mathrm{d}}{\mathrm{~d} x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \text { ] }
$$

(iii) What is the range of $g^{\prime}$ ?
(iv) Solve the inequality $g^{\prime}(x)>0$.
c. Determine $\lim _{x \rightarrow \infty}\left(x^{2}-2 x+2\right) e^{-x}$.
d. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}-9 x^{2}+24 x+7$. Find the intervals of increase and decrease of $f$ and its local minima and maxima.

B3. a. (i) Show that the Taylor series expansion for the function $f(x, y)=(4+$ $x y)^{3 / 2}$ about the point $(0,1)$, is given by

$$
f(x, y)=8+3 x y+\frac{3 x^{2}}{16}+\ldots
$$

NB. Take the positive square root where appropriate.
(ii) Use part (i) to evaluate approximately the repeated integral

$$
\int_{0}^{1} \int_{0}^{1}(4+x y)^{3 / 2} \mathrm{~d} x \mathrm{~d} y
$$

b. Find the general solution of

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+9 y=3 x+\cos (2 x)
$$

B4. Consider the initial value problem (IVP)

$$
\begin{aligned}
y^{\prime} & =t^{2} e^{-t}-2 y, \quad t \geq a \\
y(a) & =y_{0} .
\end{aligned}
$$

a. Write a Matlab function ImpEuler which solves approximately the above IVP on the interval $[a, b]$ using the improved Euler's method. The inputs should be $a, b, y_{0}$ and $N$, the number of steps. The output should be $y_{N}$, where $y_{N}$ is the estimate of $y(b)$ obtained by the improved Euler's method with step size $h=(b-a) / N$. (Do not bother to include comment statements).
b. Let $a=0$ and $y_{0}=0$ then using the improved Euler's method, first with $h=1$ and second with $h=0.5$, calculate two estimates for $y(1)$.
c. Given that the exact solution of the IVP in (b) is

$$
y(t)=\left(t^{2}-2 t+2\right) e^{-t}-2 e^{-2 t}
$$

make a statement regarding the difference in error when using $h=1$ and $h=0.5$.
d. What order of the error do we expect to see when using the improved Euler's method?

