1. TYPE OF DEGREE: BSc.
2. SESSION: May 2006.
3. MODULE CODE: MA1915.
4. MODULE TITLE: Calculus and Numerical Methods.
5. TIME ALLOWED: THREE hours plus five minutes reading time.
6. a. NUMBER OF QUESTIONS: Part A has 7 questions, Part B has 4 questions. Full marks: 100.
b. Answer ALL questions from SECTION A.

Answer TWO questions from SECTION B. If more than TWO questions from SECTION B are answered, marks from the best TWO answers will be counted.

Section A carries 50% of the total marks available for the paper.

All questions in Section B carry equal marks.

An indication of the marks allocated to each sub-section of a question is shown in brackets in the right hand margin.
7. ADDITIONAL INFORMATION: Calculators: Casio fx 82 , Casio fx 83 and Casio fx 85 ONLY.

A1. a. Determine whether the series below is convergent or divergent. If convergent, find the sum

$$
\sum_{n=0}^{\infty} \frac{2^{n+3}}{3^{n+1}}
$$

b. Evaluate the sum

$$
\sum_{n=2}^{100} \frac{1}{(n+1)(n+2)}
$$

A2. Evaluate the limits
a.

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+5}{2 x^{2}-6}
$$

b.

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin ^{2} x}
$$

[4 marks]

A3. a. Show that

$$
\frac{d}{d z}(\tan z)=1+\tan ^{2} z
$$

b. Use the result of (a.) and implicit differentiation to determine $d y / d x$, when $y=\tan ^{-1} x$.
c. Hence, or otherwise, evaluate

$$
\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}
$$

A4. a. Evaluate the following definite integrals:

$$
\begin{equation*}
\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x \tag{i}
\end{equation*}
$$

(ii)

$$
\int_{0}^{1 / 2} x e^{2 x} d x
$$

b. Present the function $|x-2|$ in piecewise form and evaluate the following definite integral

$$
\int_{1}^{4}|x-2| d x
$$

A5. Show that the function

$$
f(x, y)=x^{3}-12 x y+8 y^{3}
$$

has a critical point at $(0,0)$. Determine the second critical point and classify both.

A6. Explain why the equation

$$
\cos x-x^{2}=0
$$

must have a solution in the interval $[0,1]$.
Find this solution, correct to ± 0.2, using the bisection method.

A7. By formulating the Lagrange polynomials, fit an interpolating polynomial through the points $f(0.2)=1.76$ and $f(0.3)=1.58$ and hence give an estimate of $f(0.4)$.

B1. Consider the functions

$$
f(x):=x^{3}-3 x^{2}-x+3 ; \quad g(x):=\frac{1}{f(x)}
$$

a. Factorise $f(x)$ and hence determine all the roots of the equation $f(x)=0$.
b. What are the natural domain and codomain of f and g ?
c. Determine the coordinates of the critical points of f and classify them.

Explain your answers.
e. Determine the root of $f^{\prime \prime}(x)=0$.

What is the value of f at this point? Is this a point of inflection?
Explain your answer.
[2 marks]
f. Sketch the graphs of f and g on the same axes.

Show and explain all relevant features of the curves.
g. Evaluate

$$
\int_{-1}^{3} f(x) d x
$$

What is the geometric meaning of this result?

B2. a. Solve the differential equation

$$
\frac{d y}{d x}+y=x, \quad \text { where } \quad y(0)=1
$$

b. Use the substitution $y=v x$ to solve the homogeneous differential equation

$$
\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x y}, \quad \text { where } \quad y(1)=1
$$

Express your answer in the form $y=f(x)$.
c. Find the solution of the initial-value problem

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=x, \quad \text { where } \quad y(0)=-\frac{4}{9}, \quad y(1)=\frac{8}{9} .
$$

B3. The Taylor series for a function of two variables, $f(x, y)$, about the point (a, b) is given by

$$
\begin{aligned}
& f(x, y)=f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b) \\
& \quad+\frac{(x-a)^{2}}{2} f_{x x}(a, b)+(x-a)(y-b) f_{x y}(a, b)+\frac{(y-b)^{2}}{2} f_{y y}(a, b)+\ldots
\end{aligned}
$$

a. Obtain the Taylor series expansion, up to and including all second derivatives, for the function $f(x, y)$ about the point $(0,1)$, when

$$
f(x, y)=y e^{2 x y}
$$

b. Use the method of Lagrange multiplier to locate the critical points of the function $f(x, y)=3 x+4 y$ subject to the constraint $x^{2}+y^{2}=1$. Determine the nature of these critical points.
[14 marks]

B4. Consider the initial value problem (IVP)

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =x^{2}-2 y, \quad x \geq x 0 \\
y(x 0) & =y 0
\end{aligned}
$$

a. Write a matlab function Eulers method which solves approximately the above IVP on the interval $[x 0, b]$. The inputs should be $x 0, y 0, b$ and h, the step size, you may assume that h divides $b-x 0$ exactly. The outputs should be $\mathbf{x}=(x 0, x 1 \ldots x n)$ and $\mathbf{y}=(y 0, y 1 \ldots y n)$, where $x n=x 0+n h$ and $y n$ is the estimate of $y(x n)$ obtained by Euler's method with step length h. (Do not bother to include comment statements).
b. Let $x 0=0$ and $y 0=0$ then using Euler's method, first with $h=0.1$ and second with $h=0.05$, calculate two estimates for $y(0.3)$.
c. State whether Euler's method is an explicit or an implicit formula, giving an explanation for your answer.
d. (i) Given that the exact solution of the IVP in (b) is

$$
y(x)=\frac{x^{2}}{2}-\frac{x}{2}-\frac{e^{-2 x}}{4}+\frac{1}{4},
$$

make a statement regarding the difference in error when using $h=0.1$ and $h=0.05$.
(ii) What order error do we expect to see when using Euler's method?

