Section A

A1. a. The series converges to 8. b. $\frac{11}{34}$. a. $\frac{3}{2}$. A2. b. $-\frac{1}{2}$. A3. a. b. $\frac{1}{1+x^2}$. c. 1. A4. a. 1. b. $\frac{1}{4}$. A5. a. b. $\frac{5}{2}$.

A6. The second critical point is at (2, 1). The point (0, 0) is a saddle point and the point (2, 1) is a local minimum.

 $|x-2| = \begin{cases} x-2, & \text{if } x \ge 2, \\ 2-x, & \text{if } x < 2. \end{cases}$

A7. The solution is $X = 0.875 \pm 0.125$.

A8. The polynomial is

$$P(x) = 1.76(3 - 10x) + 1.58(10x - 2).$$

 $f(0.4) \simeq 1.4.$

Section B

B1. a.
$$f(x) = (x - 1)(x + 1)(x - 3)$$
. So the roots of $f(x) = 0$ are $-1, 1, 3$.

b.

 $\mathrm{dom}(f) = \mathbb{R}, \quad \mathrm{codom}(f) = \mathbb{R}, \quad \mathrm{dom}(g) = \mathbb{R} \backslash \{-1, 1, 3\}, \quad \mathrm{codom}(g) = \mathbb{R}.$

- c. There is a local maximum at $1 \frac{2\sqrt{3}}{3}$ and a local minimum at $1 + \frac{2\sqrt{3}}{3}$.
- d. f''(x) = 0 when x = 1. This is a point of inflection.
- e. g has vertical asymptotes at x = -1, 1, 3. It has a horizontal asymptote at y = 0.
- f. 0. This means that between -1 and 3 the area below the x-axis and above the graph equals the area above the x-axis and below the graph.

B2. a.
$$y = x - 1 + 2e^x$$
.

b.
$$y = x\sqrt{\ln x^2 + 1}$$
.
c. $y = \frac{e^{3(1-x)}}{1-e^2} - \frac{e^{3-x}}{1-e^2} + \frac{1}{3}x - \frac{4}{9}$.

B3. a.
$$ye^{2xy} = 1 + 2x + (y - 1) + 2x^2 + 4x(y - 1) + \cdots$$

b. The critical points are at $\left(\frac{3}{5}, \frac{4}{5}\right)$ and $\left(-\frac{3}{5}, -\frac{4}{5}\right)$. The first is a maximum with value 5 and the second is a minimum with value -5.

B4. a.

- b. When h = 0.1, an estimate for f(0.3) is 0.0048. When h = 0.05, an estimate for f(0.3) is 0.0063.
- c. It is an explicit formula.
- d. (i) The error approximately halves when h is halved.
 - (ii) We would expect an error of O(h).