1. TYPE OF DEGREE: BSc.
2. SESSION: May 2007.
3. MODULE CODE: MA1915.
4. MODULE TITLE: Calculus and Numerical Methods.
5. TIME ALLOWED: 3 hours (plus 5 minutes reading time).
6. a. NUMBER OF QUESTIONS: Part A has 7 questions, Part B has 4 questions. Full Marks: 100.
b. Answer all questions from Section A. Answer two questions from Section B. If more than two questions from Section B are answered, marks from the best two answers will be counted.
Section A carries 50% of the total marks available for the paper.
All questions in Section B carry equal marks.
An indication of the marks allocated to each sub-section of a question is shown in brackets in the righthand margin.
7. ADDITIONAL INFORMATION: Calculators: Casio fx 82 , Casio fx 83 and Casio fx 85 ONLY.

A1. Evaluate the limits
a.

$$
\lim _{x \rightarrow 0} \frac{1-e^{x}}{\sin (2 x)},
$$

b.

$$
\lim _{x \rightarrow \infty} \frac{3 x^{3}-1}{5 x-2 x^{3}}
$$

A2. a. Differentiate
(i)

$$
f(x)=x^{3} e^{2 x}
$$

(ii)

$$
g(x)=\sin \left(x^{5}\right) .
$$

b. (i) Differentiate the function

$$
h(x)=\ln \left(\frac{2+x}{2-x}\right) .
$$

(ii) Determine the natural domain of h.

A3. a. Evaluate the following definite integrals:
(i)

$$
\int_{0}^{\pi / 2} \sin x \cos ^{3} x d x
$$

(ii)

$$
\int_{0}^{1}(x-2) e^{-3 x} d x
$$

b. Evaluate the following indefinite integral:

$$
\int \frac{\sqrt{x+1}-x}{(x+1)^{2}} d x
$$

A4. Solve the differential equation

$$
\frac{d y}{d x}+2 y=3 x, \quad \text { where } \quad y(1)=0
$$

A5. Determine the critical points of the function

$$
f(x, y)=x^{3}-3 x y+8 y^{3}+7
$$

and classify them.

A6. Given the initial value problem

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =3 x^{3}-2 x y^{2}, \quad x \geq 1 \\
y(1) & =2
\end{aligned}
$$

carry out one step of the Euler predictor-corrector method to get an estimate for $y(1.1)$.

A7. Using Lagrange polynomials fit an interpolating polynomial through the points $f(1.2)=1.76, f(1.4)=1.52$ and $f(1.6)=1.38$ and hence give an estimate of $f(1.5)$.

B1. Consider the function

$$
f(x):=\frac{x}{x^{2}-5 x+4} .
$$

a. Factorise the function $g(x):=x^{2}-5 x+4$ and determine the natural domain of f. Determine the roots of the equation $f(x)=0$.
b. Compute

$$
\lim _{x \rightarrow \infty} f(x) \quad \text { and } \quad \lim _{x \rightarrow-\infty} f(x)
$$

c. Does the graph of f have any vertical or horizontal asymptotes? If yes, what are they?
d. Determine the coordinates of the critical points of f and classify them. Explain your answers. Does f have an absolute maximum or minimum?
e. Show that $f^{\prime \prime}(x)=0$ has a root in the interval $(-5,-4)$. Explain your answer.
f. Sketch the graph of f indicating the above features in your graph.
g. Evaluate

$$
\int_{5}^{6} f(x) d x
$$

simplifying your answer as much as possible.

B2. a. Use the substitution $y=v x$ to solve the homogeneous differential equation

$$
\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}, \quad \text { where } \quad y(1)=1
$$

Express your answer in the form $y=f(x)$.
b. Find the solution of the initial-value problem

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+5 y=x, \quad \text { where } \quad y(0)=1, \quad y(1)=2
$$

c. Determine whether the series

$$
\sum_{n=0}^{\infty} \frac{3^{2 n+3}}{4^{2 n+1}}
$$

is convergent or divergent. If convergent, find the sum. If divergent, explain why.

B3. The Taylor series for a function of two variables, $f(x, y)$, about the point (a, b) is given by

$$
\begin{aligned}
& f(x, y)=f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b) \\
& \quad+\frac{(x-a)^{2}}{2} f_{x x}(a, b)+(x-a)(y-b) f_{x y}(a, b)+\frac{(y-b)^{2}}{2} f_{y y}(a, b)+\ldots
\end{aligned}
$$

a. Obtain the Taylor series expansion, up to and including all second derivatives, for the function $f(x, y)$ about the point $(0,1)$, when

$$
f(x, y)=x e^{3 x y}
$$

b. Find a normal vector to the surface $z-x e^{3 x y}=0$ at the point $(0,1,0)$.
c. Use the method of Lagrange multiplier to locate the critical points of the function $f(x, y)=6 x+7 y$ subject to the constraint $x^{2}+2 y^{2}=2$. Determine the nature of these critical points.

B4. a. (i) Without sketching a graph explain why the equation

$$
0=2 \cos x-e^{x}
$$

must have a solution on the interval $[0,1]$.
(ii) Now sketch the graph and hence establish the number of roots on the interval $[0,1]$.
b. (i) Write down the formula for Newton's method.
(ii) Using a starting point of $x_{0}=0.5$ and using working calculations of 8 decimal places, estimate the solution, X, of $f(x)=0$ for $x \in[0,1]$ correct to 0.000001 by Newton's method.
c. (i) Write down the general formula for the composite Simpson's rule.
(ii) Now given that

x	0	0.1	0.2	0.3	0.4	0.5
$\mathrm{f}(\mathrm{x})$	1	0.8848	0.7387	0.5608	0.3503	0.1064

x	0.6	0.7	0.8	0.9	1.0
$\mathrm{f}(\mathrm{x})$	-0.1714	-0.4841	-0.8321	-1.2164	-1.6377

estimate

$$
\int_{0}^{1} f(x) \mathrm{d} x
$$

using the composite Simpson's rule.

