1. TYPE OF DEGREE: BSc.
2. SESSION: May 2008.
3. MODULE CODE: MA1915.
4. MODULE TITLE: Calculus and Numerical Methods.
5. TIME ALLOWED: 3 hours (plus 5 minutes reading time).
6. a. NUMBER OF QUESTIONS: Part A has 7 questions, Part B has 4 questions. Full Marks: 100.
b. Answer all questions from Section A. Answer two questions from Section B. If more than two questions from Section B are answered, marks from the best two answers will be counted. Then Section A carries 50 $\%$ of the total marks available for the paper, and all questions in Section B carry equal marks.
An indication of the marks allocated to each sub-section of a question is shown in brackets in the righthand margin.
7. ADDITIONAL INFORMATION: Calculators: Casio fx 82 , Casio fx 83 and Casio fx 85 ONLY.

A1. Evaluate the limits

a.

$$
\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{2 x^{2}-x-1}
$$

b.

$$
\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{\cos (3 x)-1}
$$

A2. a. Differentiate
(i)

$$
f(x)=x^{3} \ln (2 x),
$$

(ii)

$$
g(x)=\cos \left(3 x^{4}-2 x\right) .
$$

b. (i) Determine the natural domain of the function

$$
h(x)=\frac{1}{\sqrt{1+\sin x}} .
$$

(ii) Differentiate the function

$$
h(x)=\frac{1}{\sqrt{1+\sin x}} .
$$

A3. Evaluate the following definite integrals:
a.

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos x} d x
$$

b.

$$
\int_{0}^{1}(x+3) e^{2 x} d x
$$

c.

$$
\int_{\frac{1}{e}}^{e}|\ln x| d x .
$$

A4. Use an appropriate test to determine whether the following series converge or diverge:
a.

$$
\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}
$$

b.

$$
\sum_{n=1}^{\infty} \frac{e^{-n}}{1+e^{-n}}
$$

A5. Determine the first three non-zero terms in the MacLaurin series of $f(x)=e^{-x^{2}}$.

Hence, evaluate approximately the integral

$$
\int_{0}^{1 / 2} e^{-x^{2}} d x
$$

and obtain the value of

$$
\lim _{x \rightarrow 0} \frac{e^{-x^{2}}-1+x^{2}}{x^{4}}
$$

A6. a. Explain why the equation

$$
\ln \left(\frac{x+1}{2}\right)+x^{2}=0
$$

must have a solution in the interval $[0,1]$.
b. Find this solution, correct to ± 0.1 using Newton's method, with $x_{0}=1$.

A7. Using Lagrange polynomials fit an interpolating polynomial through the points $f(0.2)=1.4, f(0.4)=0.9, f(0.6)=1.7$ and hence give an estimate of $f(0.5)$.

B1. Consider the function

$$
f:[0,2 \pi] \rightarrow \mathbb{R}, f(x):=\sin ^{2} x-3 \sin x+2
$$

a. Determine the roots of the equation $f(x)=0$. Compute $f(0), f(\pi)$ and $f(2 \pi)$.
b. Determine the coordinates of the critical points of f and classify them. Explain your answers. What are the absolute minima and maxima of f ?
c. Compute the roots of the equation $f^{\prime \prime}(x)=0$ and the values of f at these points. Are these points of inflection? Explain your answers.
d. Sketch the graph of f indicating the above features in your graph.
e. Give the complete function specification (domain, codomain, rule) for the composition $g \circ f$ when

$$
g:(0, \infty) \rightarrow \mathbb{R}, \quad g(x):=\ln x
$$

and f is given above. Determine the coordinates of the absolute maxima and minima of $g \circ f$ if they exist. Does $g \circ f$ have any asymptotes? If yes, give their equation(s). Sketch the graph of $g \circ f$ indicating the above features in your graph.

B2. a. Use an integrating factor to obtain the solution to:

$$
\frac{d y}{d x}-2 x y=e^{x^{2}}, \quad y(0)=1
$$

b. Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=2 \cos (2 x)
$$

c. A curve in \mathbb{R}^{2} is mapped by the position vector

$$
\mathbf{r}=t \cos ^{2} t \mathbf{i}+t \sin 2 t \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

Use parametric differentiation to determine the gradient of the curve at the point $t=\pi / 4$. Hence, determine the Cartesian equation of the tangent line to the curve at the point $t=\pi / 4$.

B3. A surface is specified by $z=f(x, y)$ where $f(x, y)=x^{3}+3 x y^{2}-6 x y$.
a. The surface has four critical points, two of which are located at $(0,0)$ and $(1,1)$. Classify these critical points and locate the other two.
b. Find the normal vector and tangent plane to the surface at the point $(-1,0,-1)$.
c. Determine the volume enclosed by the above tangent plane, the $x y$-plane and the four planes $x=0, x=2, y=0, y=1$.

B4. Consider the initial value problem (IVP)

$$
\begin{aligned}
y^{\prime} & =t e^{-3 t}-y, \quad t \geq t_{0} \\
y\left(t_{0}\right) & =y_{0} .
\end{aligned}
$$

a. Write a Matlab function Euler which solves approximately the above IVP on the interval $\left[t_{0}, b\right]$ using Euler's method. The inputs should be t_{0}, y_{0}, b and n, the number of steps. The outputs should be $t=\left(t_{0}, t_{1}, \ldots, t_{n}\right)$ and $y=\left(y_{0}, y_{1}, \ldots, y_{n}\right)$, where $t_{i}=t_{0}+i \cdot h, h=\left(b-t_{0}\right) / n$ and y_{i} is the estimate of $y\left(t_{i}\right)$ obtained by Euler's method with step size h. (You do not need to include comment statements).
b. Let $t_{0}=0$ and $y_{0}=0$ then using Euler's method, first with $h=0.1$ and second with $h=0.05$, calculate two estimates for $y(0.2)$.
c. Given that the exact solution of the IVP in (b) is

$$
y(t)=-\frac{1}{2} t e^{-3 t}-\frac{1}{4} e^{-3 t}+\frac{1}{4} e^{-t} .
$$

Compute the errors when using $h=0.1$ and $h=0.05$. Comment on your results.
d. What order of error do we expect for Euler's method?

