Degree Examination

MX4505 Chaos and Fractals
Monday 23 May 2005
(9 am to 11 am$)$

Only calculators approved by the Department of Mathematical Sciences may be used in this examination. Calculator memories must be clear at the start of the examination. Marks may be deducted for answers that do not show clearly how the solution is reached.

Answer THREE questions. All questions carry equal weight.

1. (a) Consider the fractal curve $\gamma:[0,1] \longrightarrow \mathbb{R}$ with generator

$$
x_{0}=(0,0), \quad x_{1}=\left(\frac{1}{6}, 0\right), \quad x_{2}=\left(\frac{1}{3}, \frac{\sqrt{3}}{6}\right), \quad x_{3}=\left(\frac{2}{3}, \frac{\sqrt{3}}{6}\right), \quad x_{4}=\left(\frac{5}{6}, 0\right), \quad x_{5}=(1,0) .
$$

(i) Sketch γ_{0}, γ_{1} and γ_{2}.
(ii) Find orientation-preserving similarities $f_{1}, \ldots, f_{5}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ mapping (0,0) to x_{i-1} and $(1,0)$ to x_{i}, where $1 \leq i \leq 5$. Describe f_{1}, \ldots, f_{5} geometrically in terms of scaling, rotation, and translation.
(b) Let $f_{1}, f_{2}: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by

$$
f_{1}(x)=\frac{1}{4} x, \quad f_{2}(x)=\frac{1}{4} x+\frac{3}{4} .
$$

Let $C_{0}=[0,1]$. Let $C_{n}=f_{1}\left(C_{n-1}\right) \cup f_{2}\left(C_{n-1}\right)$. Let $C=\bigcap_{n=0}^{\infty} C_{n}$.
(i) Sketch C_{0}, C_{1} and C_{2}.
(ii) Calculate the similarity dimension of C (with respect to the iterated function system given by f_{1}, f_{2}).
(iii) Calculate the box dimension of C.
(iv) Calculate the Hausdorff distance between C_{0} and C_{1}.
(v) Calculate the Hausdorff distance between C_{0} and C.
2. Three orientation-preserving similarities $f_{1}, f_{2}, f_{3}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$, are defined by $f_{i}(x)=\frac{1}{3} x+b_{i}$, where

$$
b_{1}=(0,0), \quad b_{2}=\left(\frac{1}{3}, \frac{1}{3}\right), \quad b_{3}=\left(\frac{2}{3}, \frac{2}{3}\right) .
$$

Let $K\left(\mathbb{R}^{2}\right)$ be the collection of non-empty, compact subsets of \mathbb{R}^{2}. Define $F: K\left(\mathbb{R}^{2}\right) \longrightarrow$ $K\left(\mathbb{R}^{2}\right)$ by $F(A)=f_{1}(A) \cup f_{2}(A) \cup f_{3}(A)$. You may assume that

$$
d(F(A, B)) \leq \frac{1}{3} d(A, B)
$$

for any $A, B \in K\left(\mathbb{R}^{2}\right)$, where d is the Hausdorff distance. Let M_{0} be the closed square

$$
M_{0}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1,0 \leq y \leq 1\right\}
$$

Let $M_{n}=F^{n}\left(M_{0}\right)$.
(i) Sketch M_{0}, M_{1}, M_{2}.
(ii) For each $n \in \mathbb{N}$, show that $d\left(M_{n-1}, M_{n}\right) \leq \frac{1}{3^{n-1}} d\left(M_{0}, M_{1}\right)$.
(iii) Let $m, n \in \mathbb{N}$ and assume that $m>n$. Show that $d\left(M_{n}, M_{m}\right) \leq \frac{1}{2 \cdot 3^{n-1}} d\left(M_{0}, M_{1}\right)$. Deduce that the sequence $\left(M_{n}\right)$ is a Cauchy sequence.
(iv) Since $K\left(\mathbb{R}^{2}\right)$ is a complete metric space, the Cauchy sequence $\left(M_{n}\right)$ converges to a set $M \in K\left(\mathbb{R}^{2}\right)$. Show that M is a fixed point of F. That is, show that $F(M)=M$.
(v) Let D_{0} be the closed disc of radius 1, centred at the origin. Let $D_{n}=F^{n}\left(D_{0}\right)$. You may assume that $\left(D_{n}\right)$ is a Cauchy sequence and converges to a set $D \in K\left(\mathbb{R}^{2}\right)$. Briefly explain why $D=M$.
(vi) Prove that M equals the straight line segment joining the points $(0,0)$ and $(1,1)$.
3. (a) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable. Suppose $a \in \mathbb{R}$ is a fixed point of f. Suppose $b \in \mathbb{R}$ is a periodic point of f of period $k>1$.
(i) What is meant by saying that a is a hyperbolic fixed point? What is meant by saying that the orbit of b is hyperbolic?
(ii) State a criterion which determines when a hyperbolic fixed point of f is attracting or repelling.
(iii) What is meant by saying that the orbit of b is attracting? Let $b_{0}=b$. For $1 \leq i<k$, let $b_{i}=f^{i}(b)$. Suppose the orbit of b is hyperbolic. Prove that the orbit of b is attracting if

$$
\left|f^{\prime}\left(b_{k-1}\right) \cdot f^{\prime}\left(b_{k-2}\right) \cdots f^{\prime}\left(b_{0}\right)\right|<1 .
$$

(You may assume the criterion for when a hyperbolic fixed point is attracting.)
(b) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the map defined by $f(x)=x^{2}+2 x-6$.
(i) Find the hyperbolic fixed points of f. Determine whether they are attracting or repelling.
(ii) Find the hyperbolic period 2 orbit of f. Determine whether it is attracting or repelling.
4. (a) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be two continuous maps. What is meant by saying that f and g are topologically conjugate?
(b) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be the logistic maps $f(x)=\frac{5}{4} x(1-x)$ and $g(x)=\frac{3}{4} x(1-x)$. Find constants α and β such that f and g are topologically conjugate by a homeomorphism of the form $\phi(x)=\alpha x+\beta$.
(c) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous map. Suppose $a \in \mathbb{R}$ is a fixed point of f. Define what is meant by the basin of attraction of a.
(d) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the logistic map $f(x)=\frac{5}{4} x(1-x)$. You may assume that $f(x)$ has two fixed points, an attracting fixed point at $x=\frac{1}{5}$ and a repelling fixed point at $x=0$. Find the basins of attraction for each of the fixed points.

