Degree Examination

MX4033 Number Theory
Thursday 22 January 2004
(3pm to 5 pm$)$

Answer THREE questions. All questions carry equal weight.

1. (a) Calculate $\left(\frac{-2}{13}\right)$.

Hence, or otherwise, show that $\left(x^{2}+2\right)(x+4) \equiv 0(\bmod 13)$ has exactly one solution $\bmod 13$.
Solve the congruence $x^{3}+4 x^{2}+2 x+8 \equiv 0(\bmod 1521)$.
(b) For which primes p does the congruence $5 x^{2}+6 x+2 \equiv 0(\bmod p)$ have at least one solution?
2. (a) Calculate $\left(\frac{273}{809}\right)$ and $\left(\frac{267}{811}\right)$.
(b) State Gauss's Law of Quadratic Reciprocity in the form

$$
\left(\frac{p}{q}\right)=(-1)^{k}\left(\frac{q}{p}\right)
$$

(State the conditions on p and q and the expression for k.)
Use this this to show that if p and q are odd primes such that $p=q+4 a$ for some odd integer a, then $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$.
3. (a) Show that if p is both a quadratic residue $\bmod 3$ and congruent to $1 \bmod 4$, then p is congruent to $1 \bmod 12$. Then find the smallest prime p satisfying both of the following conditions:
(i) $p \equiv 1(\bmod 4)$;
(ii) 3,5 and 7 are all quadratic residues $\bmod p$.
(b) By considering $f^{2}+4$ for a suitable integer f, show that there are an infinite number of primes of the form $12 k+5$.
4. (a) Let d be a square-free integer congruent to $3 \bmod 4$, let $\alpha=a+b \sqrt{d}$ be an element in the field $\mathbb{Q}(\sqrt{d})$ and let $\bar{\alpha}=a-b \sqrt{d}$ be the algebraic conjugate of α. Show that if both $\alpha \bar{\alpha}$ and $\alpha+\bar{\alpha}$ are integers, then both a and b are integers.
(b) Show that there is no element, α, in I_{-17} with the property that $\alpha^{2}=18$.

Show that there is an ideal, P, in I_{-17} such that $P^{2}=\langle 18\rangle$.

