UNIVERSITY OF ABERDEEN

DEGREE EXAMINATION MX4033 Number Theory Thursday 22 January 2004

(3pm to 5pm)

Answer THREE questions. All questions carry equal weight.

1. (a) Calculate $\left(\frac{-2}{13}\right)$.

Hence, or otherwise, show that $(x^2 + 2)(x + 4) \equiv 0 \pmod{13}$ has exactly one solution mod 13.

Solve the congruence $x^3 + 4x^2 + 2x + 8 \equiv 0 \pmod{1521}$.

(b) For which primes p does the congruence $5x^2 + 6x + 2 \equiv 0 \pmod{p}$ have at least one solution?

- **2.** (a) Calculate $\left(\frac{273}{809}\right)$ and $\left(\frac{267}{811}\right)$.
 - (b) State Gauss's Law of Quadratic Reciprocity in the form

$$\left(\frac{p}{q}\right) = (-1)^k \left(\frac{q}{p}\right) \,.$$

(State the conditions on p and q and the expression for k.)

Use this to show that if p and q are odd primes such that p = q + 4a for some odd integer a, then $\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right)$.

- **3.** (a) Show that if p is both a quadratic residue mod 3 and congruent to 1 mod 4, then p is congruent to 1 mod 12. Then find the smallest prime p satisfying both of the following conditions:
 - (i) $p \equiv 1 \pmod{4}$;
 - (ii) 3, 5 and 7 are all quadratic residues mod p.

(b) By considering $f^2 + 4$ for a suitable integer f, show that there are an infinite number of primes of the form 12k + 5.

4. (a) Let d be a square-free integer congruent to 3 mod 4, let $\alpha = a + b\sqrt{d}$ be an element in the field $\mathbb{Q}(\sqrt{d})$ and let $\bar{\alpha} = a - b\sqrt{d}$ be the algebraic conjugate of α . Show that if both $\alpha\bar{\alpha}$ and $\alpha + \bar{\alpha}$ are integers, then both a and b are integers.

(b) Show that there is no element, α , in I_{-17} with the property that $\alpha^2 = 18$.

Show that there is an ideal, P, in I_{-17} such that $P^2 = \langle 18 \rangle$.