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reached.

Answer THREE questions. All questions carry equal weight.

(a) Define what is meant by the closure of a subset A of a metric space X.1.

(b) Let A be a connected subspace of a metric space X. Show that the closure of A in X,
A = ClX(A), is a connected subspace of X. You may use the fact that the closure of A in
A is equal to A, i.e. ClA(A) = A, for any subset A of X.

(c) Let (X, d) and (Y, ρ) be metric spaces. Let f : X → Y be a locally constant function,
that is, for every x ∈ X there exists some δ > 0 such that f(x′) = f(x) for all x′ ∈ BX

0 (x, δ).

Show that f is continuous. Show that if in addition X is connected then f is constant,
namely f(x) = f(x′) for all x, x′ ∈ X.

(a) Define what is meant by an open cover of a metric space X. What is a Lebesgue2.
number of an open cover? What does Lebesgue’s lemma say about open covers of compact
metric spaces?

(b) Let (X, d) and (Y, ρ) be metric spaces and let f :X → Y be a continuous function. Prove
that if X is compact then f is uniformly continuous.

(c) Let X denote the open interval (0, 3
4 ) equipped with the usual metric. For every n ≥ 1

consider the open sub-intervals Un = (
1

2n+1
,

3
2n+1

). Regard Un as an open ball B0(xn, rn)

in X. What is xn ? What is rn ? Consider the open cover U = {Un}n≥1 of X (you are not
required to prove that U covers X). Show that for every n ≥ 1, the point xn belongs to Un

but not to any other Uk where k 6= n. Prove that U does not admit a Lebesgue number.
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(a) What is meant by saying that a subset A of a metric space X is nowhere dense?3.
What is a complete metric space? State Baire’s Theorem.

(b) Deduce from Baire’s theorem that if a non empty complete metric space is presented
as the union F1 ∪ F2 ∪ . . . of closed subsets, then Fn contains an open ball for some n ≥ 1.

(c) Let f : R → R be a function which has derivatives of all orders, namely the functions
f ′, f ′′, f (3), f (4), . . . are differentiable (hence continuous). Assume that for every t ∈ R there
exists some n ≥ 1 such that f (n)(t) = 0. Define for every k ≥ 1

Fk = {t ∈ R : f (k)(t) = 0}.

Show that Fk are closed subsets of R for all k ≥ 1. What can you say about ∪k≥1Fk ?
Use part (b) and the fundamental theorem of calculus to prove that f coincides with a
polynomial function on some interval [a, b] where a < b.

(d) Let X be a complete metric space. Consider a chain of inclusions of closed balls in X,

B(x1, r1) ⊇ B(x2, r2) ⊇ B(x3, r3) ⊇ · · ·

where rn ≤ 1
2n

. Show that the sequence of the centres of these balls (xn)∞n=1 is convergent

in X. Prove that its limit y belongs to each one of the balls B(xn, rn).

(a) Define what is meant by a loop α based at x0 in a metric space X. Define what is4.
meant by saying that a loop α is homotopic to a loop β.

(b) Prove the Pasting Lemma: Let A and B be closed subsets of X such that X = A ∪ B
and let f :X → Y be a function. If f |A and f |B are continuous then f is also continuous.

(c) Show that the relation of homotopy of loops is transitive, that is if α is homotopic to β
and β is homotopic to γ then α is homotopic to γ.
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