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Answer THREE questions. All questions carry equal weight.

(a) Define what is meant by a topological space and a basis of a topological space.1.

(b) Let T be the following collection of subsets of the natural numbers N:

T = {∅, N} ∪ {Un}∞n=1

where Un = {1, 2, . . . , n}.

(i) Show that T is a topology on N.

(ii) Determine whether N with the topology T is connected.

(iii) Determine whether N with the topology T is Hausdorff.

(iv) Determine whether N with the topology T is compact.

(c) Suppose f : X −→ Y is a function between topological spaces X and Y . Suppose the
topology on Y has a basis B. Show that f is continuous if and only if f has the property
that f−1(B) is open whenever B ∈ B.

(a) Define what is meant by a metric space. Define what is meant by a topological space2.
X being Hausdorff.

(b) Regard a point x ∈ R3 in terms of its coordinates, x = (x1, x2, x3). Define a function
d : R3 −→ R by

d(x, y) = |x1 − y1|+ |x2 − y2|+ |x3 − y3|.

(i) Show that d is a metric on R3.

(ii) With respect to this metric, give an algebraic description or draw a picture of the
open ball of radius 1 about the origin.

(c) Let M be a metric space. Prove that M is Hausdorff.

(d) Let X be a Hausdorff space and let x be a point in X. Show that the intersection of
all the open sets containing X is {x}.



(a) Define what is meant by two topological spaces being homeomorphic. Define what is3.
meant by a topological space being connected.

(b) Find an explicit homeomorphism between the closed intervals [2, 4] and [−1, 3]. Justify
that your map is a homeomorphism.

(c) Let X be a connected space and Y be a disconnected space. Prove that there is no
continuous surjection f : X −→ Y .

(d) Show that the intervals [1, 2) and (3, 5) are not homeomorphic.

(e) Let X and Y be topological spaces. Define

t : X × Y −→ Y ×X

by t(x, y) = (y, x). Prove that t is a homeomorphism.

(a) Define an equivalence relation ∼ on S1 × [0, 1] such that the quotient space4.

(S1 × [0, 1])/ ∼

is homeomorphic to a cone. (It is not necessary to prove it is a homeomorphism.)

(b) Define an equivalence relation ∼ on S1 × [0, 1] such that the quotient space

(S1 × [0, 1])/ ∼

is homeomorphic to S1. (It is not necessary to prove it is a homeomorphism.)

(c) Define an equivalence relation ∼ on S1 × [0, 1] as follows. For every x, y ∈ S1, let

(x, 0) ∼ (y, 0), (x,
1
2
) ∼ (y,

1
2
) and (x, 1) ∼ (y, 1).

Let Q be the quotient space Q = (S1× [0, 1])/ ∼. Draw a picture of Q. To what well-known
space is Q homeomorphic? (A proof is not necessary.)

(d) Define what is meant by a continuous map between topological spaces. Define what is
meant by a topological space being compact.

(e) Let f : X −→ Y be a continuous surjection between topological spaces X and Y . Show
that if X is compact then Y is compact.

(f) Let X and Y be compact spaces. Suppose there is an equivalence relation ∼ on X ×Y .
Let Q be the quotient space

Q = (X × Y )/ ∼ .

Prove that Q is a compact space.
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