Degree Examination
 MX3531 Rings and Fields

Tuesday 22 May 2007
(12 noon to 2 pm)

Answer ALL FOUR questions. All questions have equal weight.

1. Let R be the ring of real valued continuous functions on \mathbb{R}, i.e. the set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with addition and multiplication defined by $(f+g)(x)=f(x)+g(x)$ and $(f g)(x)=f(x) g(x)$, respectively. Consider the evaluation map $\varphi: R \rightarrow \mathbb{R}$, defined by $f \mapsto f(0)$.
(a) Find the additive and multiplicative identity elements of R.
(b) Is R an integral domain?
(c) State the isomorphism theorem for rings.
(d) Show that φ is a ring homomorphism, and that φ is surjective.
(e) Show that $\operatorname{ker}(\varphi)$ is a maximal ideal of R.
2. Let $I=n \mathbb{Z}$ and $J=m \mathbb{Z}$. You may assume that the sets

$$
I, J, I J=\left\{\sum_{i, j \text { fnite }} i j \mid i \in I, j \in J\right\} \quad \text { and } \quad I+J=\{i+j \mid i \in I, j \in J\}
$$

are ideals of \mathbb{Z}.
(a) Show that $I+J=d \mathbb{Z}$, where $d=\operatorname{gcd}(n, m)$.
(b) Show that $I J=n m \mathbb{Z} \subseteq I \cap J=l \mathbb{Z}$, where $l=\frac{n m}{d} \in \mathbb{Z}$ is the least common multiple of n and m.
(c) Deduce from parts (a) and (b) that $I+J=\mathbb{Z} \Longleftrightarrow I J=I \cap J \Longleftrightarrow d=1$.
3. (a) Consider the rings $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{p}$, for $p=2,3$ and 5 . Factorise $t^{3}-2$ as a product of irreducible polynomials in $R[t]$, for each of the listed rings R.
(b) Show that the quotient ring $F=\mathbb{Q}[t] /\left(t^{3}-2\right) \mathbb{Q}[t]$ is a field and find the inverse of the class of $t+1$ in F.
(c) Find $a, b \in \mathbb{R}[t]$ such that $a f+b g=\operatorname{gcd}(f, g)$, for $f=t^{6}+t^{4}+1$ and $g=t^{2}-t+1$.
4. (a) Give the definition of a principal ideal domain.
(b) Let p be a prime number and define $R_{p}=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, p\right.$ does not divide $\left.b\right\}$.
(i) Find the characteristic and the group of units of R_{p}.
(ii) Show that any non zero ideal of R_{p} has the form $p^{e} R_{p}$, for some nonnegative integer e.
(iii) Deduce from part (ii) that R_{p} is a principal ideal domain and that the set $p R_{p}=\left\{\left.\frac{a}{b} \in R_{p} \right\rvert\, p\right.$ divides $\left.a\right\}$ is the unique maximal ideal of R_{p}. Identify the quotient ring $R_{p} / p R_{p}$, and find its characteristic.
(iv) Show that if p and q are distinct primes, then there are no nonzero ring homomorphisms between R_{p} and R_{q}.

