UNIVERSITY OF ABERDEEN

DEGREE EXAMINATION MX3531 Rings and Fields Tuesday 22 May 2007

(12 noon to 2 pm)

Answer ALL FOUR questions. All questions have equal weight.

- 1. Let R be the ring of real valued continuous functions on \mathbb{R} , i.e. the set of continuous functions $f : \mathbb{R} \to \mathbb{R}$, with addition and multiplication defined by (f+g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x), respectively. Consider the evaluation map $\varphi : R \to \mathbb{R}$, defined by $f \mapsto f(0)$.
 - (a) Find the additive and multiplicative identity elements of R.
 - (b) Is R an integral domain?
 - (c) State the isomorphism theorem for rings.
 - (d) Show that φ is a ring homomorphism, and that φ is surjective.
 - (e) Show that $\ker(\varphi)$ is a maximal ideal of R.
- 2. Let $I = n\mathbb{Z}$ and $J = m\mathbb{Z}$. You may assume that the sets

$$I, J, IJ = \{\sum_{i,j \text{ finite}} ij \mid i \in I, j \in J\} \text{ and } I + J = \{i + j \mid i \in I, j \in J\}$$

are ideals of \mathbb{Z} .

(a) Show that $I + J = d\mathbb{Z}$, where $d = \gcd(n, m)$.

(b) Show that $IJ = nm\mathbb{Z} \subseteq I \cap J = l\mathbb{Z}$, where $l = \frac{nm}{d} \in \mathbb{Z}$ is the least common multiple of n and m.

- (c) Deduce from parts (a) and (b) that $I + J = \mathbb{Z} \iff IJ = I \cap J \iff d = 1$.
- 3. (a) Consider the rings $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p$, for p = 2, 3 and 5. Factorise $t^3 2$ as a product of irreducible polynomials in R[t], for each of the listed rings R.

(b) Show that the quotient ring $F = \mathbb{Q}[t]/(t^3 - 2)\mathbb{Q}[t]$ is a field and find the inverse of the class of t + 1 in F.

(c) Find $a, b \in \mathbb{R}[t]$ such that $af + bg = \gcd(f, g)$, for $f = t^6 + t^4 + 1$ and $g = t^2 - t + 1$.

- 4. (a) Give the definition of a principal ideal domain.
 - (b) Let p be a prime number and define $R_p = \{ \frac{a}{b} \in \mathbb{Q} \mid p \text{ does not divide } b \}.$
 - (i) Find the characteristic and the group of units of R_p .
 - (ii) Show that any non zero ideal of R_p has the form $p^e R_p$, for some non-negative integer e.
 - (iii) Deduce from part (ii) that R_p is a principal ideal domain and that the set pR_p = { a/b ∈ R_p | p divides a } is the unique maximal ideal of R_p. Identify the quotient ring R_p/pR_p, and find its characteristic.
 - (iv) Show that if p and q are distinct primes, then there are no nonzero ring homomorphisms between R_p and R_q .