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Answer THREE questions

(a) Let E ⊆ Rn be a subset. Define what it means for E to be1.

i) an open subset,

ii) a closed subset, and

iii) a bounded subset.

Let f : E → R be a continuous function, where E is a subset of Rn. State a
condition on E which ensures that f obtains a maximum and a minimum on
E? You are not required to prove your statement.

(b) By using the Karush-Kuhn-Tucker method or otherwise, find the absolute
minimum and maximum (if they exist) of the function H(x, y, z) = x + y2 + z
on the unit ball x2 + y2 + z2 6 1.

(a) Let E ⊆ Rn be a subset. Define what it means for E to be a convex2.
subset. Let E be a convex subset of Rn, and let f : E → R be a function.
Define what it means for f to be a convex function.

(b) Let f(x, y, z) = x2+y2+z2. By using the Hessian matrix of f , and stating
the relevant theorem, show that f is a convex function on R3. Then, by using
the Karush-Kuhn-Tucker method, find the absolute minimum of f , if it exists,
subject to the constraints 1 6 x2 + 2y2 − z2 6 4. Show that a maximum of f
subject to this constraint does not exist.



(a) Consider the following optimisation problem: find the extrema of f(x, y, z) =3.
xyz subject to the constraints x2 + y2 + z2 = 1 and xy + yz + zx = 1. Use the
method of Lagrange multipliers to write down a system of equations, the set
of solutions of which contain all potential maxima and minima of f subject to
the given constraints. Do not attempt to solve the system.

(b) Let E ⊆ Rn be a convex subset and let f : E → R be a convex function.
Show that for any c ∈ R, the set

Zf = {x ∈ E | f(x) 6 c}

is a convex subset of Rn. Show furthermore that if {fi}i∈I is any collection of
convex functions on a convex subset E ⊆ Rn, and {ci}i∈I is a collection of real
numbers, then the set

{x ∈ E | fi(x) 6 ci, ∀i ∈ I}

is a convex subset of Rn.

(a) A Highland Malt distillery is producing malt whiskey of two different4.
types, using workers organised into three groups. Groups A, B and C are
capable of 7500, 6300 and 4200 hours’ work a year.

Each 100 bottles of whiskey of type X require 400, 200 and 100 hours’ work
by groups A, B and C, respectively. Every 100 bottles of whiskey of type Y
requires 100, 300 and 200 hours’ work by groups A, B and C, respectively.

Suppose that the profit on each bottle of type X is equal to three times the
profit on each bottle of type Y . The objective is to maximise the total profit.
Formulate this problem as a linear optimisation problem in standard form.
(You are not required to solve the problem)

(b) Solve the following linear optimisation problem:

Maximise x1 + 2x2 + 3x3 − 5 subject to x1 > 0, x2 > 0, x3 > 0 and

x1 + x2 + x3 = 4,
2x1 + 3x2 + x3 ≤ 6,
−x1 − x3 ≥ −3.
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