Degree Examination
 MX3528 Optimization Theory

Friday 25 May 2007

> Only calculators approved by the Department of Mathematical Sciences may be used in this examination. Calculator memories must be clear at the start of the examination.
> Marks may be deducted for answers that do not show clearly how the solution is reached.

Answer THREE questions

1. (a) Let $E \subseteq \mathbb{R}^{n}$ be a subset. Define what it means for E to be
i) an open subset,
ii) a closed subset, and
iii) a bounded subset.

Let $f: E \rightarrow \mathbb{R}$ be a continuous function, where E is a subset of \mathbb{R}^{n}. State a condition on E which ensures that f obtains a maximum and a minimum on E ? You are not required to prove your statement.
(b) By using the Karush-Kuhn-Tucker method or otherwise, find the absolute minimum and maximum (if they exist) of the function $H(x, y, z)=x+y^{2}+z$ on the unit ball $x^{2}+y^{2}+z^{2} \leqslant 1$.
2. (a) Let $E \subseteq \mathbb{R}^{n}$ be a subset. Define what it means for E to be a convex subset. Let E be a convex subset of \mathbb{R}^{n}, and let $f: E \rightarrow \mathbb{R}$ be a function. Define what it means for f to be a convex function.
(b) Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. By using the Hessian matrix of f, and stating the relevant theorem, show that f is a convex function on \mathbb{R}^{3}. Then, by using the Karush-Kuhn-Tucker method, find the absolute minimum of f, if it exists, subject to the constraints $1 \leqslant x^{2}+2 y^{2}-z^{2} \leqslant 4$. Show that a maximum of f subject to this constraint does not exist.
3. (a) Consider the following optimisation problem: find the extrema of $f(x, y, z)=$ $x y z$ subject to the constraints $x^{2}+y^{2}+z^{2}=1$ and $x y+y z+z x=1$. Use the method of Lagrange multipliers to write down a system of equations, the set of solutions of which contain all potential maxima and minima of f subject to the given constraints. Do not attempt to solve the system.
(b) Let $E \subseteq \mathbb{R}^{n}$ be a convex subset and let $f: E \rightarrow \mathbb{R}$ be a convex function. Show that for any $c \in \mathbb{R}$, the set

$$
Z_{f}=\{\mathbf{x} \in E \mid f(\mathbf{x}) \leqslant c\}
$$

is a convex subset of \mathbb{R}^{n}. Show furthermore that if $\left\{f_{i}\right\}_{i \in I}$ is any collection of convex functions on a convex subset $E \subseteq \mathbb{R}^{n}$, and $\left\{c_{i}\right\}_{i \in I}$ is a collection of real numbers, then the set

$$
\left\{\mathbf{x} \in E \mid f_{i}(\mathbf{x}) \leqslant c_{i}, \forall i \in I\right\}
$$

is a convex subset of \mathbb{R}^{n}.
4. (a) A Highland Malt distillery is producing malt whiskey of two different types, using workers organised into three groups. Groups A, B and C are capable of 7500,6300 and 4200 hours' work a year.
Each 100 bottles of whiskey of type X require 400, 200 and 100 hours' work by groups A, B and C, respectively. Every 100 bottles of whiskey of type Y requires 100,300 and 200 hours' work by groups A, B and C, respectively.
Suppose that the profit on each bottle of type X is equal to three times the profit on each bottle of type Y. The objective is to maximise the total profit. Formulate this problem as a linear optimisation problem in standard form. (You are not required to solve the problem)
(b) Solve the following linear optimisation problem:

Maximise $x_{1}+2 x_{2}+3 x_{3}-5$ subject to $x_{1} \geqslant 0, x_{2} \geqslant 0, x_{3} \geqslant 0$ and

$$
\begin{aligned}
& x_{1}+x_{2} \\
& 2 x_{1}+3 x_{3}=4 \\
&-x_{1}+x_{3} \leq 6, \\
&-x_{3} \geq-3 .
\end{aligned}
$$

