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reached.

Answer THREE questions. All questions carry equal weight.

(a) Give a brief description of the theory of graduation of life tables by means of a math-1.
ematical formula. You may assume that the function being graduated is qx(α), where α
denotes an s-vector of parameters and x denotes age, and that data of the form {dx, Ex} is
available for r consecutive integer ages x, where dx, Ex denote the number of deaths and
the “initial” exposed to risk respectively at age x.

(b) The mortality experience of a large group of non-smokers is being graduated by reference
to a standard mortality table by means of the formula

qx(α) = α1 + α2q
A
x

where α = (α1, α2)> is a vector of unknown parameters and qAx is according to the specified
standard table. The ages involved are x = 17, 18, . . . , 88, and you have obtained data of the
form {dx, Ex}.

(i) Give formulae for the likelihood function and the log-likelihood function for α.

(ii) Give two equations which must be solved (numerically) to find the maximum likelihood
estimate α̂ = (α̂1, α̂2)> of α.

(iii) Define
◦
qx= qx(α̂) for x = 17, 18, . . . , 88, and let {

◦
qx} be referred to as the graduated

rates of mortality. Define the standardised deviations, {zx}.

(iv) You are given that
88∑

x=17

(zx)2 = 139.07 .

Test the hypothesis that graduation is successful, using a 0.1% significance level.

(c) In another graduation, the pattern of signs of {zx} as age increases from left to right
was as follows:

−−−−−+ + + + + + + + +−−−−−+ +

Using a 1% significance level, test the suitability of the graduation in respect of the number
of runs.
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(a) Suppose that you are conducting a meta-analysis of the results of several clinical trials2.
of treatment X against a control treatment. There are ` trials (labelled from i = 1 to i = `)
and for trial i you find an unbiased estimator β̂i of a certain parameter β (which is taken to
be the same in all ` trials), together with the (approximate) variance of β̂i, which is denoted
by vi.

(i) Derive from first principles an expression for the estimator, β∗, of β which has the
smallest variance among the family of unbiased estimators of β which are linear com-
binations of β̂1, β̂2, . . . , β̂`.

(ii) Peto’s method of estimating the log-odds ratio, β, leads to the unbiased estimator

Pi =
Oi − Ei
Vi

in trial i, where Oi and Ei are the observed and expected deaths among “treatment”
patients in trial i and Vi is a variance term. The variance of Pi is approximately equal
to (Vi)−1. Derive a simple formula for the minimum variance estimator β∗ (defined in
(i) above) in terms of Oi, Ei, Vi (i = 1, 2, . . . , `), and give an approximate formula for
its variance.

(iii) Using the formulae of (ii), you have found the estimate β∗ = −0.2711 of the log-odds
ratio β, with approximate variance 0.003212. Find an approximate 95% confidence
interval for the “true” odds ratio.

(b) A study of impaired assured lives in the period 1987 to 1998 gave the following facts
for males:

impairment actual deaths actual/expected deaths
cerebrovascular disorders 79 1.72

The expected deaths were calculated using a standard table for male assured lives.

Find an approximate 95% confidence interval for the Standardised Mortality Ratio of male
assured lives with this impairment relative to the standard table.
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(a) Suppose that lives belong to exactly one of 3 types (A, B and C), and let p1, p2, p33.
denote the chances that a randomly-chosen life belongs to type A, B and C respectively. A
random sample of n lives is chosen, and the numbers of people of types A, B and C are n1,
n2 and n3 respectively.

(i) You wish to test the hypothesisH0 : p1 = p2. Assuming that n is large, derive formulae
for McNemar’s test of this hypothesis.

(ii) In a Finnish case-control study, each woman whose baby had a birth defect (a “case”)
was matched with another woman whose baby did not have a birth defect (a “control”),
and the coffee consumption of the women during pregnancy was recorded. Let the
variable X be defined as follows:

X =


1 if “case” drank more coffee than “control”
2 if “control” drank more coffee than “case”
3 if consumption was the same for both women.

The results were as follows:

X = 1 for 237 pairs of women
X = 2 for 246 pairs of women
X = 3 for 223 pairs of women.

Use McNemar’s test to test the hypothesis that there is no association between coffee
consumption and the incidence of birth defects.

(b) Let n lives be rated by two raters, A and B. Consider the opinions of raters A and B
concerning life k (k = 1, 2, . . . , n) as given by the scores xk, yk respectively, where xk and
yk may take the values 0, 1, 2, . . . ,m − 1. Let nij be the number of lives for which xk = i
and yk = j, and let

ni· =
m−1∑
j=0

nij (i = 0, 1, . . . ,m− 1)

n·j =
m−1∑
i=0

nij (j = 0, 1, . . . ,m− 1)

(i) Using the weight function (i− j)2, define weighted kappa, κ.

(ii) Show that

κ =
1
n

∑n
k=1(xk − x̄)(yk − ȳ)

1
2n {

∑n
k=1(xk − x̄)2 +

∑n
k=1(yk − ȳ)2}+ 1

2 (x̄− ȳ)2
.

(iii) State the circumstances under which κ is a good estimator of the (true) correlation
coefficient between the opinions of the two raters. (You may assume that n is large.)
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(a) You are given that Kolmogorov’s Forward Equations for an n-state model are as follows4.
(in the usual notation):

d

dt
pij(x, x+ t) = −µj(x+ t)pij(x, x+ t) +

∑
ν 6=j

µνj(x+ t)piν(x, x+ t) (1 ≤ i, j ≤ n, t ≥ 0)

where µj(y) =
∑
ν 6=j

µjν(y) for 1 ≤ j ≤ n.

Consider the life table model, with states 1 and 2 representing “alive” and “dead” respec-
tively.

(i) Write down the Kolmogorov Forward Equation when i = 1 and j = 1.

(ii) Solve this equation to express p11(x, x+ t) in terms of µ12(x+ r) (0 ≤ r ≤ t).

(iii) Express the result of (ii) in traditional actuarial notation.

(b) It has been found that, at all ages, the force of mortality of those suffering from a certain
condition is twice that of English Life Table No.12 - Males. You are given that q60 = 0.02287
according to English Life Table No.12 - Males. Find the chance that a life aged exactly 60
with the above condition will die within a year.

(c) The time to failure, T hours, of a certain type of component has distribution function

FT (t) = 1− exp
[
−αt

2

2

]
(t > 0, 0 otherwise)

where α = 2× 10−6.

(i) Find the hazard rate, h(t) (t > 0).

(ii) Find the modal lifetime of a component of this type.

MX3527 Survival Statistics with Actuarial and Medical Applications Tuesday 25 May 2004


