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reached.

Answer THREE questions. All questions carry equal weight.

(a) Define what is meant by a subgroup of a group G. In each of the following, decide1.
whether H is a subgroup of the group G.

(i) G = GL(2,R),

H = {
[
a b
0 1

]
: a, b ∈ R, a 6= 0}

(ii) G = S5, H is the subset consisting of all elements σ of G such that σ3 = (1).

(b) Let G be a group and H a subgroup of G. Define what is meant by a left coset of H in
G. State Lagrange’s theorem.

(c) Let G be a group such that g2 = 1 for all g ∈ G. Show that G is abelian.

(a) Let G and H be groups.2.

Define what is meant by a homomorphism from G to H. Define what is meant by the kernel
of a homomorphism from G to H. Define what is meant for a subgroup N of G to be a
normal subgroup of G.

Show that the kernel of a homomorphism from G to H is a subgroup of G and that it is a
normal subgroup of G.

(b) Let R−{0} be the group of non-zero real numbers under multiplication. Show that the
groups GL(2,R)/SL(2,R) and R − {0} are isomorphic. Clearly state any theorem which
you use to prove this.

(c) Let G be a group and let g ∈ G. Define what is meant by the subgroup generated by g.
Define what it means for G to be cyclic.

Let p be a prime number. Show that if |G| = p, then G is cyclic. Clearly state any theorem
you use.
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(a) Let G be a group and let g ∈ G. Define what is meant by the order o(g) of g.3.

Suppose that o(g) = 99. Find o(g7) and o(g9). Give a brief explanation for your answer.

(b) Let σ be the following permutation of {1, 2, 3, 4, 5, 6, 7} given in two-line notation.
(

1 2 3 4 5 6 7
7 2 4 3 1 5 6

)

(i) Write σ in cycle notation.

(ii) Is σ an element of A7?

(c) Let τ be an element of S14 with cycle type 1, 1, 2, 3, 3, 4.

(i) What is the order of τ? Give a brief explanation for your answer.

(ii) How many subgroups does 〈τ〉 have? What are their orders? Give a brief explanation
for your answer.

(d) Write down all the conjugates of (123) in S4. Give a brief explanation for your answer.

(e) The following are the conjugacy classes of A4: {(1)}, {(12)(34), (13)(24), (14)(23)},
{(123), (142), (134), (243)}, {(132), (124), (143), (234)}.
Prove that A4 does not have a subgroup of order 6. You may use any fact on normal
subgroups proved in the course.

(a) Define what is meant by an action of a group G on a set X. For an element x of X4.
define what is meant by the orbit Orb(x) of x and what is meant by the stabiliser subgroup
St(x) of x. Assuming G is finite, state a formula relating |G|, |St(x)| and |Orb(x)|.
Hence show that if a group of order 27 acts on a set with 56 elements, then there are at
least two orbits of size 1.

(b) Let p be a prime. Define the notion of a Sylow p-subgroup of a finite group.

(i) State the first Sylow theorem.

(ii) Write down a Sylow 2-subgroup of A4 and a Sylow 3-subgroup of S5. You need not
justify your answer.
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