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Marks may be deducted for answers that do not show clearly how the solution is

reached.

Answer THREE questions. All questions carry equal weight.

A bead P of mass m slides without friction along a string which occupies the line y = 0,1.
z = 1 in 3–space. A force −mr/‖r‖3 acts on P , where r = xi + k is the position vector of
P . There are no other external forces.

(i) Using d’Alembert’s principle, set up a second order differential equation for the
function t 7→ x(t) which describes the x–coordinate of the particle as a function of
time t.

(ii) Find the constant (time independent) solutions of the differential equation.

(iii) There is a smallest positive number c such that, if x(0) = 0 and ẋ(0) > c, then the
bead will “escape” to infinity (that is, limt→+∞ x(t) = +∞). Find c.

(a) Define what is meant by the angular momentum (relative to the origin) of a particle of2.
mass m, with position vector r and velocity vector ṙ.

(b) Define what is meant by a central force F(r). State and prove the law of conservation
of angular momentum for a particle of mass m moving under the influence of a central force.

(c) Define what is meant by a conservative force F(r). State and prove the law of conserva-
tion of (total) energy for a particle of mass m moving under the influence of a conservative
force.

(d) Determine if the force F(r) is conservative (justify your answer) and, if it is, find a
potential function in the cases

(i) F(r) = yzi + xzj + 2xyk where r = xi + yj + zk;

(ii) F(r) =
1
‖r‖ (−yi + xj) where r = xi + yj.
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A bead of mass m slides without friction along the plane curve K given by y = sinx. The3.
only external force acting on the bead is −mg j, due to gravity. Let r(t) = x(t) i + y(t) j be
the position vector of the bead at time t.

(i) Use the relationship y(t) = sin(x(t)) to find an expression for ÿ(t) in terms of x(t),
ẋ(t) and ẍ(t).

(ii) Write down a nonzero tangent vector v(r) to the curve K at the point with position
vector r = xi + sin(x)j.

(iii) Explain briefly what d’Alembert’s principle means for the sliding bead. Hence, and
using your result from part (ii), show that

ẍ+ ÿ cosx+ g cosx = 0 for all t.

(iv) From (i) and (ii), obtain a second order differential equation for the function t 7→ x(t);
that is, an expression for ẍ(t) in terms of x(t) and ẋ(t). Do not attempt to solve the
differential equation.

(a) Let P1, P2, . . .Pn be distinct particles in R3, with masses m1, m2, . . . , mn and position4.
vectors r1(t), r2(t), . . . , rn(t) at time t. Suppose that the total force F tot

i acting on Pi is
the sum of an external force F ext

i and interactive forces F int
ij for j = 1, . . . , n. (These forces

may depend on the position of all the particles, their velocity and the time t.) Assume
F int
ij = −F int

ji , F int
ii = 0, and that F int

ij is always parallel to the line through Pi and Pj .

(i) Define what is meant by the centre of mass of the system of particles P1, . . . , Pn.
Using Newton’s second law, show that

(
n∑
i=1

mi) q̈ =
n∑
i=1

F ext
i

where q is the position vector of the centre of mass.

(ii) Define what is meant by the angular momentum vector (relative to the origin) of the
system of particles P1, . . . , Pn. Using Newton’s second law, show that the angular
momentum vector is constant as a function of time t if all external forces F ext

i are
zero.

(b) Two particles P1 and P2 move along the (horizontal) x–axis, with x-coordinates r1(t)
and r2(t) at time t, respectively. Both have mass 1. Particle P1 is attached to the right–hand
end of a spring whose left–hand end is attached to the origin. Particle P2 is attached to the
right–hand end of a spring whose left–hand end is attached to P1. Both springs have natural
length 1 and spring constant 1. (The particles are not influenced by any gravitational forces.)
Draw a picture of the situtation. Using Hooke’s law and Newton’s second law, write down a
system of two second order differential equations for the functions t 7→ r1(t) and t 7→ r2(t).
Do not attempt to solve the system.
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