Degree Examination
MA1502 Algebra
Monday 28 May 2007
(9 am to 11 am)

Answer all SIX questions in section A and TWO questions from section B.
Each question in section A is worth 10 marks. Each question in section B is worth 20 marks.
Marks may be deducted for answers which do not show clearly how the answer is reached.
The use of calculators in the exam is not allowed.

SECTION A

1. (a) Determine the real and imaginary parts of the complex number

$$
\frac{3-7 i}{2+6 i}
$$

(b) Sketch the following complex numbers on an Argand diagram. (That means: depict them as "points in the plane".) For each of the four complex numbers, determine the modulus and the principal argument.

$$
-2 i, \quad-1+i, \quad \sqrt{3}+i, \quad \frac{1}{2}(\cos (\pi / 6)+i \sin (\pi / 6)) .
$$

2. (a) Find the real and imaginary parts of $(\sqrt{3}+i)^{-10}$.
(b) Determine the solutions of $z^{2}=16+30 i$.
3. Three points in 3 -space are given by $A=(1,2,3), B=(4,0,-1)$ and $C=(-2,1,-3)$. Calculate the following:
(i) $\underline{A B} \cdot \underline{A C}$;
(ii) the cosine of the angle at A of the triangle $A B C$;
(iii) the coordinates of the point P on the line segment $A B$ for which $|A P|=2|P B|$;
(iv) the value of $\lambda \in \mathbb{R}$ such that $\underline{A B}+\lambda \underline{B C}$ is perpendicular to $\underline{A C}$.
4. (a) Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -5 & 3 & 0 \\ 2 & 0 & -2\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 3 \\ 0 & -1 \\ -4 & 6\end{array}\right]$. Calculate $A B$.
(b) Let

$$
A=\left[\begin{array}{cc}
1 / 2 & x \\
y & -1 / 2
\end{array}\right]
$$

Determine A^{T}, the transpose of A. For which choices of x and y is $A^{T} A$ equal to the identity matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ?
$$

5. Let $f(n)=\sum_{j=1}^{n} j \cdot 2^{j} \quad$ and $\quad g(n)=(n-1) 2^{n+1}+2$.
(a) Calculate $f(1), f(2)$ and $f(3)$.
(b) Calculate $g(1), g(2)$ and $g(3)$.
(c) Use mathematical induction to show that $f(n)=g(n)$ for every integer $n \geqslant 1$.
6. (a) Evaluate $\binom{8}{4}$ and $\binom{14}{11}$.
(b) Make a list of all surjective maps from $\{1,2,3\}$ to $\{a, b\}$.
(c) Determine the number of surjective maps from the set $\{a, b, c, d, e\}$ to the set $\{1,2,3,4\}$.

SECTION B

7. (a) You are told that $2+i$ is a solution of the equation

$$
x^{4}-3 x^{3}+2 x^{2}+x+5=0
$$

Confirm this and find all the other solutions [real or complex] of this equation.
(b) Find all solutions of the equation $z^{5}=-1-i$. For each solution, write down the modulus and principal argument.
8. (a) Let M be the plane with equation

$$
x_{1}+2 x_{2}-3 x_{3}=1
$$

Determine a nonzero vector which is perpendicular to the plane.
Let $A=(1,1,5)$. Determine the coordinates of the point B on the plane M which has the shortest distance from A, and determine that distance.
(b) Construct an inverse for the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 7 \\
0 & 1 & 7 \\
2 & -1 & -6
\end{array}\right]
$$

9. (a) Let X, Y, Z be sets. Let $g: X \rightarrow Y$ and $f: Y \rightarrow Z$ be maps. Suppose that g is surjective and f is not injective. Show that $f \circ g: X \rightarrow Z$ is not injective.
(b) A standard pack of cards contains $52=13 \times 4$ cards [13 ranks in four suits: the ranks are in increasing order $2,3,4, \ldots, 10$, Jack, Queen, King, Ace and the suits are clubs, spades, hearts and diamonds.]
(i) Two cards are dealt from a well-shuffled pack. What is the probability that they are of different ranks ?
(ii) Four cards are dealt from a well-shuffled pack. Find an expression for the probability that at most two of them are Jacks.
(c) In how many ways can integers $a_{1}, a_{2}, a_{3}, a_{4}$ be selected, all $\geqslant 0$, such that

$$
a_{1}+a_{2}+a_{3}+a_{4}=11 ?
$$

