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reached.

Answer SIX questions. All questions carry equal weight.

(a) Simplify:1.

(i)
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; (ii)
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(b) Expand (2y + z)2.

(c) Express a in terms of x if
3
x

=
a+ 2
a− 1

.

(d) Simplify
a2 − b2
a3 + a2b

.

Let l1 be the line through the points (−3, 3) and (−1, 2). Find an equation for l1.2.

Let l2 be the line through the point (0, −1) with slope 2. Find an equation for l2.

Are l1 and l2 perpendicular ? Justify your answer.

Find the point of intersection P of the lines l1 and l2.

Find the point Q at which l1 meets the x-axis.

Determine the distance from P to Q.

(a) By “completing the square”, find the minimum value of x2 + 6x− 5 and the value of x3.
at which the minimum is achieved. What is the maximum value of 5− 6x− x2 ?

(b) Let p(x) = x3 − 2x2 − 5x+ 6. Show that p(1) = 0. Factorise the polynomial p(x)
completely and hence find all the solutions of the equation p(x) = 0.

(a) Convert 240◦ to radians, expressing your answer as a multiple of π.4.

(b) Find the length of an arc of a circle of radius 20 cm which subtends an angle 60◦ at the
centre of the circle.

(c) Express 3 sinx◦ − 4 cosx◦ in the form R cos (x− α)◦ where R > 0 and 0 6 α 6 360.

Hence sketch the graph y = 3 sinx◦ − 4 cosx◦ (0 6 x 6 360).
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(a) Express 2 log (A)− 3 log (B) + 4 log (C) in terms of a single logarithm.5.

(b) Solve the equation 4x = 7.

(c) A building society pays interest on its accounts. The amount of money m in a particular
account is given by

m = cekt pounds,

where t is the time in years and c and k are constants. The account contains 100 pounds
when t = 0 and this increases to 150 pounds after 10 years. Find the values of c and k and
determine the amount in the account after 20 years to the nearest pound.

(a) Find f ′(x) in each of the cases:6.

(i) f(x) = (x+ 1)(x− 2);

(ii) f(x) =
3
x
− 1
x2

;

(iii) f(x) = 3 cos (2x)− 2 sin (3x).

(b) Find an equation of the tangent to the graph y = x3− 3x+ 1 at the point on the graph
where x = 2.

(c) Find an equation of the tangent to the graph y = sin (x) + cos (x) + 3 at the point on
the graph where x = π.

(a) Find f ′(x) in both of the cases:7.

(i) f(x) =
√
x(x+ 1);

(ii) f(x) = 3 sin2(x) + (3x+ cos (x))4;

(b) Let f(x) = 6x− 2x3. Find the stationary points of f and determine the nature of each
stationary point. Also find the intervals on which f is increasing or decreasing.

(a) Find:8.

(i)
∫

(x3 + x+ 7) dx; (ii)
∫

(cos (2x) + sin (7x)) dx.

(b) Evaluate: ∫ 1

0

(
x2 − sin (πx)

)
dx.

(c) Find where the line y = 2x and the graph y = 2x(3− x) intersect.

Find the (finite) area enclosed by the line and graph.
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