## Degree Examination

EG2010 Engineering Mathematics 2
Friday 20 January 2006
(9am to 11am)

NOTES:
(i) Candidates are permitted to use approved calculators.
(ii) Candidates are permitted to use the Engineering Mathematics Handbook, which will be available to them.

Candidates should attempt ALL questions from Section A and any TWO questions from section B.

## SECTION A

1. (a) Find the general solution of the ordinary differential equation

$$
\frac{d x}{d t}-2 x=2 t-3
$$

using a particular integral of the form $x=p t+q$.
(b) Solve the initial value problem

$$
\frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}-6 x=0, \quad \text { with } x=1 \text { and } \frac{d x}{d t}=7 \text { when } t=0
$$

2. (a) A variable $u$ is given as a function of two variables $x, y$ by $u=x y^{2} \mathrm{e}^{3 y}+x^{2}+y$. Find the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial u}{\partial y}, \frac{\partial^{2} u}{\partial x \partial y}$.
(b) Let $u$ be the function of three variables given by $u=x z^{2}+y x^{2}+z y^{2}$. Find the value of the constant $k$ such that $u$ satifies the partial differential equation:

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+z^{2} \frac{\partial^{2} u}{\partial z^{2}}=k u
$$

3. (a) Find the two critical points of the function

$$
f(x, y)=1+3 x^{2}+3 y-4 y^{3}
$$

and classify them as local maxima, local minima or saddle points.
(b) Find the one critical point of the function

$$
f(x, y)=\mathrm{e}^{x y}
$$

and classify that critical point as a local maximum, a local minimum or a saddle point.
4. (a) Find the Laplace transforms of each of the following functions
(i) $f(t)=t^{3}-4 t+2$,
(ii) $f(t)=2 \cos (3 t)+\mathrm{e}^{-4 t}$,
(iii) $f(t)=\mathrm{e}^{3 t} t^{2}$.
(b) Find the inverse Laplace transform of each of the following functions
(i) $F(s)=\frac{4}{s^{3}}-\frac{5}{s}$,
(ii) $F(s)=\frac{1}{s^{2}+4}$.
(iii) $F(s)=\frac{12}{(s-2)^{4}}$.

## SECTION B

5. (a) Find the general solution of the homogeneous linear ODE

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=0
$$

Classify the system described by this differential equation as under damped, critically damped or over damped. Give the value of the natural (angular) frequency and the damping parameter. [You are reminded of the theoretical expression $2 k \omega_{n} \frac{d x}{d t}$.]
[7 marks]
(b) Using your result from (a), find the general solution of the non-homogeneous ordinary differential equation:

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=\cos t-2 \sin t
$$

Describe the behaviour of the solution as $t \rightarrow \infty$. Write down the steady state response and determine its amplitude.
6. (a) Find the linear approximation to the function $f(x, y)=\cos (x+y)+\sin (2 x-y)$ for $(x, y)$ close to $(0,0)$. [6 marks]
(b) The radius of a cylinder can be manufactured to an accuracy of $\pm 1.5 \%$ and the height of the cylinder can be manufactured to an accuracy of $\pm 3 \%$. Estimate the maximum possible percentage error in the volume of the cylinder produced.
[6 marks]
(c) A variable $u$ is a function of the two variables $x$ and $y$. New variables $s$ and $t$ are defined by $s=x+2 y$ and $t=2 x-y$.
Using the chain rule, express the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ in terms of the partial derivatives $\frac{\partial u}{\partial s}, \frac{\partial u}{\partial t}$.

Hence rewrite the partial differential equation

$$
\begin{equation*}
2 \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}=0 \tag{1}
\end{equation*}
$$

in terms of the new variables $s, t$ and find the general solution. Determine the solution of (1) which satisfies the condition that $u(x, 0)=\cos x$ for all $x$.
[8 marks]
7. (a) An odd function $f(x)$ is periodic with period $2 \pi$. It is given in the range $0 \leq x \leq \pi$ by:

$$
f(x)= \begin{cases}3 & \text { if } 0<x<\pi \\ 0 & \text { if } x=0 \text { or } x=\pi\end{cases}
$$

Sketch the graph of $f(x)$ in the range $-\pi \leq x \leq 3 \pi$.
Determine the Fourier sine coefficients $b_{n}(n \geq 1)$ for $f(x)$ and write down the Fourier sine series as far as the term in $\sin (5 x)$.
(b) Consider the initial value problem

$$
\frac{d x}{d t}=2 x-4 y, \quad \frac{d y}{d t}=x-3 y+3, \quad \text { where } x=0 \text { and } y=0 \text { when } t=0
$$

Show that the Laplace transform $X(s)$ of $x$ is given by

$$
X(s)=\frac{-12}{s(s+2)(s-1)}
$$

Hence express $x$ as a function of $t$.
[13 marks]

