Degree Examination
EG2010 Engineering Mathematics 2
Tuesday 18 January 2005
(3pm to 5 pm$)$

NOTES:
(i) Candidates are permitted to use approved calculators.
(ii) Candidates are permitted to use the Engineering Mathematics Handbook, which will be available to them.

Candidates should attempt ALL questions from Section A and any TWO questions from section B.

SECTION A

1. (a) Find the general solution of the ordinary differential equation

$$
\frac{d x}{d t}+3 x=9 t-6
$$

using a particular integral of the form $x=p t+q$.
(b) Solve the initial value problem

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}-3 x=0, \quad \text { with } x=5 \text { and } \frac{d x}{d t}=-3 \text { when } t=0
$$

2. (a) A variable u is given as a function of two variables x, y by

$$
u=x \mathrm{e}^{x y}+x^{2} y
$$

Find the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ and verify that

$$
x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=u
$$

(b) The function u of the three variables x, y and z is given by $u=\mathrm{e}^{c x} \sin (4 y) \cos (3 z)$, where c is a constant. Find the two values of c for which u satisfies Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

3. (a) Find the two critical points of the function

$$
f(x, y)=x^{2}+y^{3}-y^{2}-y
$$

and classify them as local maxima, local minima or saddle points.
(b) Find the one critical point of the function

$$
f(x, y)=\mathrm{e}^{x y+y}
$$ and classify that critical point as a local maximum, a local minimum or a saddle point.

4. (a) Find the Laplace transform of each of the following functions
(i) $f(t)=4 t^{3}+3 t^{2}-5$,
(ii) $f(t)=\mathrm{e}^{-3 t}+2 \sin (4 t)$,
(iii) $f(t)=\mathrm{e}^{2 t} \cos (t)$.
(b) Find the inverse Laplace transform of each of the following functions
(i) $F(s)=\frac{6}{(s+2)(s-1)}$,
(ii) $F(s)=\frac{s+6}{s^{2}+4}$.

SECTION B

5. (a) Find the general solution of the homogeneous linear differential equation

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+10 x=0
$$

Classify the system described by this differential equation as under damped, critically damped or over damped. Give the value of the natural (angular) frequency and the damping parameter. [You are reminded of the theoretical expression $2 k \omega_{n} \frac{d x}{d t}$.]
[7 marks]
(b) Using your result from (a), find the general solution of the non-homogeneous equation

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+10 x=30 \cos (2 t)
$$

Describe the behaviour of the solution as $t \rightarrow \infty$. Write down the steady state response and determine its amplitude.
[13 marks]
6. (a) The period T of small oscillations of a weight of mass m suspended on a (weightless) spring of spring constant k is given by $T=2 \pi \sqrt{\frac{m}{k}}$ so that $k=4 \pi^{2} \frac{m}{T^{2}}$. This formula is used to measure the spring constant k. The mass m can only be measured to an accuracy of $\pm 1.5 \%$ and the period T to an accuracy of $\pm 2 \%$. Find the approximate maximum percentage error in the resulting measurement of k.
[9 marks]
(b) A variable u is a function of the Cartesian coordinates (x, y), where $x>0$. The polar coordinates (r, θ) are related to the Cartesian coordinates by

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Using the chain rule, express the partial derivative $\frac{\partial u}{\partial \theta}$ first of all in terms of $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, r$ and θ and then in terms of $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, x$ and y. Express the partial derivative $\frac{\partial u}{\partial r}$ similarly. By using one of the equations that you have obtained, or otherwise, transform the partial differential equation

$$
-y \frac{\partial u}{\partial x}+x \frac{\partial u}{\partial y}=0
$$

into polar coordinates, and find its general solution. If, in addition, $u(x, 0)=1+x^{2}$ for all $x>0$, determine the solution satisfying this initial condition.
[11 marks]
7. (a) An odd function $f(x)$ is periodic with period 2π. It is given in the range $0 \leq x \leq \pi$ by:

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x<\pi \\ 0 & \text { if } x=\pi\end{cases}
$$

Sketch the graph of $f(x)$ in the range $-\pi \leq x \leq 3 \pi$.
Determine the Fourier sine series of $f(x)$.
(b) Consider the initial value problem:

$$
\frac{d x}{d t}=y-x, \quad \frac{d y}{d t}=-x-3 y+\mathrm{e}^{-2 t}
$$

with $x=0$ and $y=0$ when $t=0$.
Show that the Laplace transform $X(s)$ of x is given by

$$
X(s)=\frac{1}{(s+2)^{3}}
$$

By determining the inverse Laplace transform of $X(s)$, express x as a function of t. Hence, or otherwise, express y as a function of t.

