UNIVERSITY OF ABERDEEN

DEGREE EXAMINATION EG1006 Engineering Mathematics 1 Monday 16 January 2006

NOTE:	(i)	Candidates are permitted to use approved calculators
	(ii)	Candidates are permitted to use the Engineering Mathematics Handbook,
		which will be made available to them.

(iii) Marks may be deducted for answers that do not show clearly how the solution is reached.

Attempt ALL FIVE of the questions in SECTION A and THREE of the questions in SEC-TION B.

SECTION A

1. Differentiate the following functions:

$$3x^5 - \frac{1}{x^3}, \qquad e^{2x}\ln(3x), \qquad \frac{\tan(x^2 - 1)}{x^2}.$$
 [3,3,3 marks]

- 2. (a) A curve is given, parametrically, by the equations $x = t^2$, $y = t^5$. Show that the point (1, -1) lies on this curve and find the equation of the tangent to the curve at this point. [4 marks]
 - (b) A curve is given by the implicit relation

$$x^2y^2 - y\cos x + x\sin y = 0.$$

Find an expression for $\frac{dy}{dx}$ in terms of x and y. [5 marks]

3. Evaluate the following integrals:

$$\int \left(x^2 - \frac{1}{x^4}\right) dx, \qquad \int x \cos 2x \, dx, \qquad \int x \sin(x^2) dx. \qquad [3,3,3 \text{ marks}]$$

4. (a) Let z = -6 + j and w = 4 + 5j. Express each of the following complex numbers in the form x + jy where x and y are real numbers.

$$5z + \overline{w}, \quad zw, \quad \overline{z}/w.$$
 [5 marks]

(b) Express the complex number z = 2 - 2j in modulus-argument form. Hence find the modulus and *principal* argument of z^5 . [4 marks]

(3pm to 5pm)

5. (a) Define matrices A, B and C by

$$A = \begin{pmatrix} 3 & 0 \\ 1 & -5 \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 4 & 1 \end{pmatrix}$$

Calculate those of the following expressions that can be evaluated and explain why the others cannot be:

$$AB, A^2, CB, 2BC, A+C, C^{-1}.$$
 [5 marks]

(b) Find the inverse of the matrix

$$\begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{pmatrix}.$$
 [4 marks]

SECTION B

6. (a) In the plane with usual Cartesian coordinates x and y and at a certain time t = 0, A is at the point with coordinates (0, 1) and B is at the point with coordinates (1, 0). The point O is the origin. In the units in which the x and y axes are calibrated, the point A moves at 3 units/sec along the y-axis in the direction of increasing y and B moves at the rate of 4 units/sec along the x-axis in the direction of increasing x. Find the rates at which the distance AB and the area of the triangle AOB are increasing after 3 seconds. [6 marks]

(b) The population P(t) of a certain town at time t satisfies the condition that its rate of change at time t is proportional to P(t). If this population was 20,000 in 1950 and 30,000 in 2000 what was the population in 1970 and in 1900 ? [7 marks]

7. (a) Find the local and global maximum and minimum of the function

$$f(x) = (x+2)^2(x-2)$$

on the range $-4 \le x \le 4$.

(b) Evaluate the definite integral

$$\int_{1}^{3} \frac{(t-1)dt}{(t+3)(t+1)}.$$
 [7 marks]

8. (a) Find the area enclosed by the graphs of the functions $y = x^2$ and y = x + 2. [6 marks]

(b) Find the volume enclosed when that part of the graph of the function $y = 1 + \sqrt{x}$ lying between x = 0 and x = 2 is rotated about the x-axis. [7 marks]

[6 marks]

- EG1006 Engineering Mathematics 1
 - ering Mathematics 1

Monday 16 January 2006

 $A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 3 \\ -2 & 2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 3 \\ 3 & -4 & 0 \\ -2 & 0 & -6 \end{pmatrix}$

Calculate the matrix AB and show it is invertible.

(a) Let A and B be the matrices given by

(b) For which value of λ is the following system of linear equations inconsistent ?

2x	_	y	+	λz	=	1
x	+	y	+	$(1 - \lambda)z$	=	-1
x	+	2y	-	λz	=	0

Solve the system for $\lambda = 1$.

9.

10. (a) Solve the polynomial equation

$$z^4 - 4z^3 + 12z^2 + 4z - 13 = 0$$

given that z = 2 - 3j is a root.

(b) Show that the function $y(x) = x \cos x$ satisfies the differential equation

$$\frac{dy}{dx} + y\tan x = \cos x$$

(c) Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0.$$

Find a solution y(x) of this equation which satisfies y(0) = 2, $y(\frac{\pi}{4}) = 1$. [5 marks]

[5 marks]

[4 marks]

[4 marks]

[8 marks]