UNIVERSITY OF ABERDEEN

DEGREE EXAMINATION EG1006 Engineering Mathematics 1 Monday 17 January 2005

(12noon to 2pm)

NOTE:	(i)	Candidates are permitted to use approved calculators
	(ii)	Candidates are permitted to use the Engineering Mathematics Handbook,
		which will be made available to them.

(iii) Marks may be deducted for answers that do not show clearly how the solution is reached.

Attempt ALL FIVE of the questions in SECTION A and THREE of the questions in SEC-TION B.

SECTION A

1. Differentiate the following functions:

$$2x^4 + \frac{1}{x^2}, \qquad x^2 \ln(x^3), \qquad \frac{e^{x^2}}{\tan x}.$$
 [3,3,3 marks]

- 2. (a) A curve is given, parametrically, by the equations $x = 1 + t^3$, y = t 1. Show that the point (9,1) lies on this curve and find the equation of the tangent to the curve at this point. [4 marks]
 - (b) A curve is given by the implicit relation

$$x^{2}y^{2} + y \sin x - x \cos y = 0.$$

Find an expression for $\frac{dy}{dx}$ in terms of x and y. [5 marks]

3. Evaluate the following integrals:

$$\int \left(x^3 - \frac{1}{x^2}\right) dx, \qquad \int x e^{2x} dx, \qquad \int \frac{x \, dx}{x^2 - 4}.$$
 [3,3,3 marks]

4. (a) Let z = 3 - 2j and w = 3 + 5j. Express each of the following complex numbers in the form x + jy where x and y are real numbers.

$$2z - 3w, \qquad z\bar{w}, \qquad \frac{z}{w}.$$
 [5 marks]

(b) Express the complex number z = -3 + 3j in modulus-argument form. Hence find the modulus and *principal* argument of z^2 . [4 marks]

SESSION 2004–05

5. (a) Define matrices A, B and C by

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 0 & 2 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & -1 \\ 2 & 3 \end{pmatrix}, \qquad C = (1, 2, -3).$$

Calculate those of the following expressions that can be evaluated and explain why the others cannot be:

$$AB, BA, A^{-1}, B^2, A+C.$$
 [5 marks]

(b) Find the inverse of the matrix

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$
 [4 marks]

SECTION B

6. (a) Ice in the form of a cube melts in such a way that 3cc of ice is lost each second and the remaining ice is always in the form of a cube. At what rate is the length of the side of the ice cube changing when the side of the ice cube is 2cm long? [6 marks]

(b) A ladder of length 4m has one end A against a vertical wall and the other end B on horizontal ground. If B moves away from the wall at 2m/sec (with A remaining in contact with the wall), at what speed is A moving when B is 3m from the wall? [7 marks]

7. (a) Find the local and global maxima and minima of the function

$$f(x) = (x+1)(x-2)^2$$

for the range $-2 \le x \le 4$.

(b) Evaluate the definite integral

$$\int_0^3 \frac{dt}{(t+1)(t+2)}.$$
 [7 marks]

8. (a) Find where the curve $y = x^2$ and the line y = x + 2 meet. Hence find the area enclosed by them. [6 marks]

(b) Find the volume enclosed when that part of the curve $y = x^3 + 2$ between x = 1 and x = 2 is rotated about the x-axis. [7 marks]

9. (a) Let A and B be the matrices given by

$$A = \begin{pmatrix} 2 & 0 & -3 \\ 1 & 4 & 0 \\ 0 & 2 & -3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 4 \\ 1 & 3 & -3 \end{pmatrix}.$$

Calculate the matrices 3A - 2B and AB.

(b) Solve each of the following two systems of linear equations, stating clearly in each case the solutions obtained.

[8 marks]

[5 marks]

[6 marks]

Monday 17 January 2005

10. (a) Solve the polynomial equation

$$z^3 - 2z^2 - 3z + 10 = 0$$

given that z = 2 - j is a root.

(b) Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0.$$

Find a solution y(x) of this equation which satisfies y(0) = 2, y'(0) = 16. [5 marks] (c) Show that the function $y(x) = x^2 + e^x$ satisfies the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 2 - 4x + x^2$$

[4 marks]

[4 marks]