INDUCTION EXERCISES 1

1. Factorials are defined inductively by the rule

$$
0!=1 \quad \text { and } \quad(n+1)!=n!\times(n+1)
$$

Then binomial coefficients are defined for $0 \leq k \leq n$ by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Prove from these definitions that

$$
\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}
$$

and deduce the Binomial Theorem: that for any x and y,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

2. Prove that

$$
\sum_{r=1}^{n} \frac{1}{r^{2}} \leq 2-\frac{1}{n}
$$

3. Prove that for $n=1,2,3, \ldots$

$$
\sqrt{n} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 2 \sqrt{n}-1
$$

4. Let $A=\left(\begin{array}{rr}5 & -1 \\ 4 & 1\end{array}\right)$. Show that

$$
A^{n}=3^{n-1}\left(\begin{array}{cc}
2 n+3 & -n \\
4 n & 3-2 n
\end{array}\right)
$$

for $n=1,2,3, \ldots$ Can you find a matrix B such that $B^{2}=A$?
5. Let k be a positive integer. Prove by induction on n that

$$
\sum_{r=1}^{n} r(r+1)(r+2) \cdots(r+k-1)=\frac{n(n+1)(n+2) \cdots(n+k)}{k+1}
$$

Show now by induction on k that

$$
\sum_{r=1}^{n} r^{k}=\frac{n^{k+1}}{k+1}+E_{k}(n)
$$

where $E_{k}(n)$ is a polynomial in n of degree at most k.

INDUCTION EXERCISES 2.

1. Show that n lines in the plane, no two of which are parallel and no three meeting in a point, divide the plane into

$$
\frac{n^{2}+n+2}{2}
$$

regions.
2. Prove for every positive integer n, that

$$
3^{3 n-2}+2^{3 n+1}
$$

is divisible by 19 .
3. (a) Show that if $u^{2}-2 v^{2}=1$ then

$$
(3 u+4 v)^{2}-2(2 u+3 v)^{2}=1
$$

(b) Beginning with $u_{0}=3, v_{0}=2$, show that the recursion

$$
u_{n+1}=3 u_{n}+4 v_{n} \quad \text { and } \quad v_{n+1}=2 u_{n}+3 v_{n}
$$

generates infinitely many integer pairs (u, v) which satisfy $u^{2}-2 v^{2}=1$.
(c) How can this process be used to produce better and better rational approximations to $\sqrt{2}$? How many times need this process be repeated to produce a rational approximation accurate to 6 decimal places?
4. The Fibonacci numbers F_{n} are defined by the recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}, \text { for } n \geq 2
$$

and $F_{0}=0$ and $F_{1}=1$. Prove for every integer $n \geq 0$, that

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2} \text { and } \beta=\frac{1-\sqrt{5}}{2} .
$$

[Hint: you may find it helpful to show first that the two roots of the equation $x^{2}=x+1$ are α and β.]
5. The sequence of numbers $x_{0}, x_{1}, x_{2}, \ldots$ begins with $x_{0}=1$ and $x_{1}=1$ and is then recursively determined by the equations

$$
x_{n+2}=4 x_{n+1}-3 x_{n}+3^{n} \text { for } n \geq 0 .
$$

(a) Find the values of x_{2}, x_{3}, x_{4} and x_{5}.
(b) Can you find a solution of the form

$$
x_{n}=A+B \times 3^{n}+C \times n 3^{n}
$$

which agrees with the values of x_{0}, \ldots, x_{5} that you have found?
(c) Use induction to prove that this is the correct formula for x_{n} for all $n \geq 0$.

ALGEBRA EXERCISES 1

1. (a) Find the remainder when $n^{2}+4$ is divided by 7 for $0 \leq n<7$.

Deduce that $n^{2}+4$ is not divisible by 7 , for every positive integer n. [Hint: write $n=7 k+r$ where $0 \leq r<7$.]
(b) Now k is an integer such that $n^{3}+k$ is not divisible by 4 for all integers n. What are the possible values of k ?
2. (i) Prove that if a, b are positive real numbers then

$$
\sqrt{a b} \leq \frac{1}{2}(a+b)
$$

(ii) Now let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Let $S=a_{1}+a_{2}+\cdots+a_{n}$ and $P=a_{1} a_{2} \cdots a_{n}$.

Suppose that a_{i} and a_{j} are distinct. Show that replacing a_{i} and a_{j} with $\left(a_{i}+a_{j}\right) / 2$ and $\left(a_{i}+a_{j}\right) / 2$ increases P without changing S.

Deduce that

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}
$$

3. (i) Let n be a positive integer. Show that

$$
x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right) .
$$

(ii) Let a also be a positive integer. Show that if $a^{n}-1$ is prime then $a=2$ and n is prime.

Is it true that if n is prime then $2^{n}-1$ is also prime?
4. Let a, b, r, s be rational numbers with $s \neq 0$. Suppose that the number $r+s \sqrt{2}$ is a root of the quadratic equation

$$
x^{2}+a x+b=0
$$

Show that $r-s \sqrt{2}$ is also a root.
5. (i) The cubic equation $a x^{3}+b x^{2}+c x+d=0$ has roots α, β, γ, and so factorises as

$$
a(x-\alpha)(x-\beta)(x-\gamma)
$$

Determine

$$
\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \quad \alpha \beta \gamma
$$

in terms of a, b, c, d. What does $\alpha^{2}+\beta^{2}+\gamma^{2}$ equal?
(ii) Show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
(iii) By considering the roots of the equation $4 x^{3}-3 x-\cos 3 \theta=0$ deduce that

$$
\cos \theta \cos (\theta+2 \pi / 3) \cos (\theta+4 \pi / 3)=\frac{\cos (3 \theta)}{4}
$$

What do

$$
\cos \theta+\cos (\theta+2 \pi / 3)+\cos (\theta+4 \pi / 3) \text { and } \cos ^{2} \theta+\cos ^{2}(\theta+2 \pi / 3)+\cos ^{2}(\theta+4 \pi / 3)
$$

equal?

ALGEBRA EXERCISES 2

1. Under what conditions on the real numbers a, b, c, d, e, f do the simultaneous equations

$$
a x+b y=e \quad \text { and } \quad c x+d y=f
$$

have (a) a unique solution, (b) no solution, (c) infinitely many solutions in x and y.
Select values of a, b, c, d, e, f for each of these cases, and sketch on separate axes the lines $a x+b y=e$ and $c x+d y=f$.
2. For what values of a do the simultaneous equations

$$
\begin{aligned}
x+2 y+a^{2} z & =0, \\
x+a y+z & =0, \\
x+a y+a^{2} z & =0,
\end{aligned}
$$

have a solution other than $x=y=z=0$. For each such a find the general solution of the above equations.
3. Do 2×2 matrices exist satisfying the following properties? Either find such matrices or show that no such exist.
(i) A such that $A^{5}=I$ and $A^{i} \neq I$ for $1 \leq i \leq 4$,
(ii) A such that $A^{n} \neq I$ for all positive integers n,
(iii) A and B such that $A B \neq B A$,
(iv) A and B such that $A B$ is invertible and $B A$ is singular (i.e. not invertible),
(v) A such that $A^{5}=I$ and $A^{11}=0$.
4. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { and let } A^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

be a 2×2 matrix and its transpose. Suppose that $\operatorname{det} A=1$ and

$$
A^{T} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Show that $a^{2}+c^{2}=1$, and hence that a and c can be written as

$$
a=\cos \theta \text { and } c=\sin \theta
$$

for some θ in the range $0 \leq \theta<2 \pi$. Deduce that A has the form

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

5. (a) Prove that

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

for any 2×2 matrices A and B.
(b) Let A denote the 2×2 matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Show that

$$
\begin{equation*}
A^{2}-(\operatorname{trace} A) A+(\operatorname{det} A) I=0 \tag{1}
\end{equation*}
$$

where

- $\operatorname{trace} A=a+d$ is the trace of A, that is the sum of the diagonal elements;
- $\operatorname{det} A=a d-b c$ is the determinant of A;
- I is the 2×2 identity matrix.
(c) Suppose now that $A^{n}=0$ for some $n \geq 2$. Prove that $\operatorname{det} A=0$. Deduce using equation (1) that $A^{2}=0$.

CALCULUS EXERCISES 1 - Curve Sketching

1. Sketch the graph of the curve

$$
y=\frac{x^{2}+1}{(x-1)(x-2)}
$$

carefully labelling any turning points and asymptotes.
2. The parabola $x=y^{2}+a y+b$ crosses the parabola $y=x^{2}$ at $(1,1)$ making right angles.

Calculate the values of a and b.
On the same axes, sketch the two parabolas.
3. The curve C in the $x y$-plane has equation

$$
x^{2}+x y+y^{2}=1
$$

By solving $\mathrm{d} y / \mathrm{d} x=0$, show that the maximum and minimum values taken by y are $\pm 2 / \sqrt{3}$.
By changing to polar co-ordinates, $(x=r \cos \theta, y=r \sin \theta)$,sketch the curve C.
What is the greatest distance of a point on C from the origin?
4. Sketch the curve $y=x^{3}+a x+b$ for a selection of values of a and b.

Suppose now that a is negative. Find the co-ordinates of the turning points of the graph and deduce that $y=0$ has exactly two roots when

$$
b= \pm \frac{2 a}{3} \sqrt{\frac{-a}{3}}
$$

For what values of b does the equation $y=0$ have three distinct real roots?
5. On separate $x u$ - and $y u$-axes sketch the curves $u=8\left(x^{3}-x\right)$ and $u=e^{y} / y$ labelling all turning points.
[Harder] Hence sketch the curve $e^{y}=8 y\left(x^{3}-x\right)$.

CALCULUS EXERCISES 2 - Numerical Methods and Estimation

1. Use calculus, or trigonometric identities, to prove the following inequalities for θ in the range $0<\theta<\frac{\pi}{2}$:

- $\sin \theta<\theta$;
- $\theta<\tan \theta ;$
- $\cos 2 \theta<\cos ^{2} \theta$.

Hence, without directly calculating the following integrals, rank them in order of size.
(a) $\int_{0}^{1} x^{3} \cos x \mathrm{~d} x$,
(b) $\int_{0}^{1} x^{3} \cos ^{2} x \mathrm{~d} x$,
(c) $\int_{0}^{1} x^{2} \sin x \cos x d x$,
(d) $\int_{0}^{1} x^{3} \cos 2 x \mathrm{~d} x$.
2. Show that the equation

$$
\sin x=\frac{1}{2} x
$$

has three roots. Using Newton-Raphson, or a similar numerical method, find the positive root to 6 d.p.
The equation $\sin x=\lambda x$ has three real roots when $\lambda=\alpha$ or when $\beta<\lambda<1$ for two real numbers $\alpha<0<\beta$. Plot, on the same axes, the curves

$$
y=\sin x, \quad y=\alpha x, \quad y=\beta x .
$$

3. Let S denote the circle in the $x y$-plane with centre $(0,0)$ and radius 1 . A regular m-sided polygon I_{m} is inscribed in S and a regular n-sided polygon C_{n} is circumscribed about S.
(a) By considering the perimeter of I_{m} and the area bounded by C_{n}, prove that:

$$
m \sin \left(\frac{\pi}{m}\right)<\pi<n \tan \left(\frac{\pi}{n}\right)
$$

for all natural numbers $m, n \geq 3$.
(b) Archimedes showed (using this method) that $3 \frac{10}{71}<\pi<3 \frac{1}{7}$. What are the smallest values of m and n needed to verify Archimedes' inequality?
4. Find the coefficients of $1, x, x^{2}, x^{3}, x^{4}$ in the power series expansion (Taylor's series expansion) for $f(x)=\sec x$.

Use this approximation to make an estimate for sec $\frac{1}{10}$. With the aid of a calculator, find to how many decimal places the approximation is accurate.
5. Show that $\int \ln x \mathrm{~d} x=x \ln x-x+$ constant

Sketch the graph of the equation $y=\ln x$. By consideration of areas on your graph, show that

$$
n \ln n-n+1<\sum_{1}^{n} \ln r<(n+1) \ln (n+1)-n
$$

Let $G_{n}=\sqrt[n]{n!}$ denote the geometric mean of $1,2, \ldots, n$. Show that G_{n} / n approaches $1 / e$ as n becomes large

CALCULUS EXERCISES 3 - Techniques of Integration

1. Evaluate

$$
\int \frac{\ln x}{x} \mathrm{~d} x, \quad \int x \sec ^{2} x \mathrm{~d} x, \quad \int_{3}^{\infty} \frac{\mathrm{d} x}{(x-1)(x-2)}, \quad \int_{0}^{1} \tan ^{-1} x \mathrm{~d} x, \quad \int_{0}^{1} \frac{\mathrm{~d} x}{e^{x}+1}
$$

2. Evaluate, using trigonometric and/or hyperbolic substitutions,

$$
\int \frac{\mathrm{d} x}{x^{2}+1}, \quad \int_{1}^{2} \frac{\mathrm{~d} x}{\sqrt{x^{2}-1}}, \quad \int \frac{\mathrm{~d} x}{\sqrt{4-x^{2}}}, \quad \int_{2}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}-1\right)^{3 / 2}}
$$

3. By completing the square in the denominator, and using the substitution

$$
x=\frac{\sqrt{2}}{3} \tan \theta-\frac{1}{3}
$$

evaluate

$$
\int \frac{\mathrm{d} x}{3 x^{2}+2 x+1} .
$$

By similarly completing the square in the following denominators, and making appropriate trigonometric and/or hyperbolic substitutions, evaluate the following integrals

$$
\int \frac{\mathrm{d} x}{\sqrt{x^{2}+2 x+5}}, \quad \int_{0}^{\infty} \frac{\mathrm{d} x}{4 x^{2}+4 x+5}
$$

4. Let $t=\tan \frac{1}{2} \theta$. Show that

$$
\sin \theta=\frac{2 t}{1+t^{2}}, \quad \cos \theta=\frac{1-t^{2}}{1+t^{2}}, \quad \tan \theta=\frac{2 t}{1+t^{2}}
$$

and that

$$
\mathrm{d} \theta=\frac{2 \mathrm{~d} t}{1+t^{2}}
$$

Use the substitution $t=\tan \frac{1}{2} \theta$ to evaluate

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{(1+\sin \theta)^{2}}
$$

5. Let

$$
I_{n}=\int_{0}^{\pi / 2} x^{n} \sin x \mathrm{~d} x
$$

Evaluate I_{0} and I_{1}.
Show, using integration by parts, that

$$
I_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}
$$

Hence, evaluate I_{5} and I_{6}.

CALCULUS EXERCISES 4 - Differential Equations

1. Find the general solutions of the following separable differential equations.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}}{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\cos ^{2} x}{\cos ^{2} 2 y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=e^{x+2 y}
$$

2. Find the solution of the following initial value problems. On separate axes sketch the solution to each problem.

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-2 x}{y}, \quad y(1)=-2 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x\left(x^{2}+1\right)}{4 y^{3}}, \quad y(0)=\frac{-1}{\sqrt{2}} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1+y^{2}}{1+x^{2}} \quad \text { where } y(0)=1
\end{aligned}
$$

3. The equation for Simple Harmonic Motion, with constant frequency ω, is

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x
$$

Show that

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=v \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

where $v=\mathrm{d} x / \mathrm{d} t$ denotes velocity. Find and solve a separable differential equation in v and x given that $x=a$ when $v=0$.

Hence show that

$$
x(t)=a \sin (\omega t+\varepsilon)
$$

for some constant ε.
4. Find the most general solution of the following homogeneous constant coefficient differential equations:

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-y & =0 \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+4 y & =0, \quad \text { where } y(0)=y^{\prime}(0)=1 \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y & =0 \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y & =0, \quad \text { where } y(0)=y^{\prime}(0)=1
\end{aligned}
$$

5. Write the left hand side of the differential equation

$$
(2 x+y)+(x+2 y) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

in the form

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(F(x, y))=0
$$

where $F(x, y)$ is a polynomial in x and y. Hence find the general solution of the equation.
Use this method to find the general solution of

$$
\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

CALCULUS EXERCISES 5 - Further Differential Equations

1. Find all solutions of the following separable differential equations:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{y-x y}{x y-x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\sin ^{-1} x}{y^{2} \sqrt{1-x^{2}}}, \quad y(0)=0 . \\
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =\left(1+3 x^{2}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \quad \text { where } y(1)=0 \text { and } y^{\prime}(1)=\frac{-1}{2} .
\end{aligned}
$$

2. Use the method of integrating factors to solve the following equations with initial conditions

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x}+x y & =x \text { where } y(0)=0 \\
2 x^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 x^{2} y & =1 \text { where } y(1)=0 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}-y \tan x & =1 \text { where } y(0)=1
\end{aligned}
$$

3. Find the most general solution of the following inhomogeneous constant coefficient differential equations:

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=x \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=\sin x \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=e^{x} \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=e^{-x}
\end{aligned}
$$

4. (a) By making the substitution $y(x)=x v(x)$ in the following homogeneous polar equations, convert them into separable differential equations involving v and x, which you should then solve

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{x^{2}+y^{2}}{x y} \\
x \frac{\mathrm{~d} y}{\mathrm{~d} x} & =y+\sqrt{x^{2}+y^{2}} .
\end{aligned}
$$

(b) Make substitutions of the form $x=X+a, y=Y+b$, to turn the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y-3}{x-y-1}
$$

into a homogeneous polar differential equation in X and Y. Hence find the general solution of the above equation.
5. A particle P moves in the $x y$-plane. Its co-ordinates $x(t)$ and $y(t)$ satisfy the equations

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=x+y \quad \text { and } \quad \frac{\mathrm{d} x}{\mathrm{~d} t}=x-y
$$

and at time $t=0$ the particle is at $(1,0)$. Find, and solve, a homogeneous polar equation relating x and y.
By changing to polar co-ordinates $\left(r^{2}=x^{2}+y^{2}, \tan \theta=y / x\right)$, sketch the particle's journey for $t \geq 0$.

COMPLEX NUMBERS EXERCISES

1. By writing $\omega=a+i b$ (where a and b are real), solve the equation

$$
\omega^{2}=-5-12 i
$$

Hence find the two roots of the quadratic equation

$$
z^{2}-(4+i) z+(5+5 i)=0
$$

2. By substituting $z=x+i y$ or $z=r e^{i \theta}$ into the following equations and inequalities, sketch the following regions of the complex plane on separate Argand diagrams:

- $|z-3-4 i|<5$,
- $\arg (z)=\pi / 3$
- $0 \leq \operatorname{Re}((i z+3) / 2)<2$,
- $e^{z}=1$,
- $\operatorname{Im}\left(z^{2}\right)<0$.

3. Find the image of the point $z=2+i t$ under each of the following transformations.

- $z \mapsto i z$,
- $z \mapsto z^{2}$,
- $z \mapsto e^{z}$,
- $z \mapsto 1 / z$.

By letting t vary over all real values find the image of the line $\operatorname{Re} z=2$ under the same transformations.
4. (a) Given that $e^{i \theta}=\cos \theta+i \sin \theta$, prove that

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

(b) Use De Moivre's Theorem to show that

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

5. (a) Let $z=\cos \theta+i \sin \theta$ and let n be an integer. Show that

$$
2 \cos \theta=z+\frac{1}{z} \text { and that } 2 i \sin \theta=z-\frac{1}{z}
$$

Find expressions for $\cos n \theta$ and $\sin n \theta$ in terms of z.
(b) Show that

$$
\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)
$$

and hence find $\int_{0}^{\pi / 2} \cos ^{5} \theta \mathrm{~d} \theta$.

GEOMETRY EXERCISES

1. Describe the regions of space given by the following vector equations. In each, \mathbf{r} denotes the vector $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$;
' $'$ ' and \wedge denote the scalar (dot) and vector (cross) product:

- $\mathbf{r} \wedge(\mathbf{i}+\mathbf{j})=(\mathbf{i}-\mathbf{j})$,
- $\mathbf{r} \cdot \mathbf{i}=1$,
- $|\mathbf{r}-\mathbf{i}|=|\mathbf{r}-\mathbf{j}|$,
- $|\mathbf{r}-\mathbf{i}|=1$,
- $\mathbf{r} \cdot \mathbf{i}=\mathbf{r} \cdot \mathbf{j}=\mathbf{r} \cdot \mathbf{k}$,
- $\mathbf{r} \wedge \mathbf{i}=\mathbf{i}$.

2. Find the shortest distance between the lines

$$
\frac{x-1}{2}=\frac{y-3}{3}=\frac{z}{2} \quad \text { and } \quad x=2, \quad \frac{y-1}{2}=z .
$$

[Hint: parametrise the lines and write down the vector between two arbitrary points on the lines; then determine when this vector is normal to both lines.]
3. Let L_{θ} denote the line through (a, b) making an angle θ with the x-axis. Show that L_{θ} is a tangent of the parabola $y=x^{2}$ if and only if

$$
\tan ^{2} \theta-4 a \tan \theta+4 b=0
$$

[Hint: parametrise L_{θ} as $x=a+\lambda \cos \theta$ and $y=b+\lambda \sin \theta$ and determine when L_{θ} meets the parabola precisely once.]
Show that the tangents from (a, b) to the parabola subtend an angle $\pi / 4$ if and only if

$$
1+24 b+16 b^{2}=16 a^{2} .
$$

[Hint: use the formula $\tan \left(\theta_{1}-\theta_{2}\right)=\left(\tan \theta_{1}-\tan \theta_{2}\right) /\left(1+\tan \theta_{1} \tan \theta_{2}\right)$.]
Sketch the curve $1+24 y+16 y^{2}=16 x^{2}$ and the original parabola on the same axes.
4. What transformations of the $x y$-plane do the following matrices represent:

$$
\left.\begin{array}{ll}
i) \\
i i i)
\end{array}\left(\begin{array}{l}
x \\
y \\
x \\
y
\end{array}\right) \mapsto\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}, \quad \text { ii) } \quad\left(\begin{array}{l}
x \\
y \\
1 / 2
\end{array}\right) \mapsto\left(\begin{array}{ll}
2 & 0 \\
1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{l}
x \\
0 \\
x \\
y
\end{array}\right), \quad i v\right) \quad\left(\begin{array}{l}
1 \\
x \\
y
\end{array}\right) \mapsto\left(\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y} .
$$

Which, if any, of these transformations are invertible?
5. The cycloid is the curve given parametrically by the equations

$$
x(t)=t-\sin t, \quad \text { and } \quad y(t)=1-\cos t \quad \text { for } 0 \leq t \leq 2 \pi .
$$

(a) Sketch the cycloid.
(b) Find the arc-length of the cycloid.
(c) Find the area bounded by the cycloid and the x-axis.
(d) Find the area of the surface of revolution generated by rotating the cycloid around the x-axis.
(e) Find the volume enclosed by the surface of revolution generated by rotating the cycloid around the x-axis.

